生成扩散模型漫谈(二十):从ReFlow到WGAN-GP
By 苏剑林 | 2023-06-28 | 19394位读者 | 引用上一篇文章《生成扩散模型漫谈(十九):作为扩散ODE的GAN》中,我们介绍了如何将GAN理解为在另一个时间维度上的扩散ODE,简而言之,GAN实际上就是将扩散模型中样本的运动转化为生成器参数的运动!然而,该文章的推导过程依赖于Wasserstein梯度流等相对复杂和独立的内容,没法很好地跟扩散系列前面的文章连接起来,技术上显得有些“断层”。
在笔者看来,《生成扩散模型漫谈(十七):构建ODE的一般步骤(下)》所介绍的ReFlow是理解扩散ODE的最直观方案,既然可以从扩散ODE的角度理解GAN,那么必定存在一个从ReFlow理解GAN的角度。经过一番尝试,笔者成功从ReFlow推出了类似WGAN-GP的结果。
理论回顾
之所以说“ReFlow是理解扩散ODE的最直观方案”,是因为它本身非常灵活,以及非常贴近实验代码——它能够通过ODE建立任意噪声分布到目标数据分布的映射,而且训练目标非常直观,不需要什么“弯弯绕绕”就可以直接跟实验代码对应起来。
“让Keras更酷一些!”:中间变量、权重滑动和安全生成器
By 苏剑林 | 2019-04-28 | 93936位读者 | 引用继续“让Keras更酷一些”之旅。
今天我们会用Keras实现灵活地输出任意中间变量,还有无缝地进行权重滑动平均,最后顺便介绍一下生成器的进程安全写法。
首先是输出中间变量。在自定义层时,我们可能希望查看中间变量,这些需求有些是比较容易实现的,比如查看中间某个层的输出,只需要将截止到这个层的部分模型保存为一个新模型即可,但有些需求是比较困难的,比如在使用Attention层时我们可能希望查看那个Attention矩阵的值,如果用构建新模型的方法则会非常麻烦。而本文则给出一种简单的方法,彻底满足这个需求。
接着是权重滑动平均。权重滑动平均是稳定、加速模型训练甚至提升模型效果的一种有效方法,很多大型模型(尤其是GAN)几乎都用到了权重滑动平均。一般来说权重滑动平均是作为优化器的一部分,所以一般需要重写优化器才能实现它。本文介绍一个权重滑动平均的实现,它可以无缝插入到任意Keras模型中,不需要自定义优化器。
至于生成器的进程安全写法,则是因为Keras读取生成器的时候,用到了多进程,如果生成器本身也包含了一些多进程操作,那么可能就会导致异常,所以需要解决这个这个问题。
WGAN的成功,可能跟Wasserstein距离没啥关系
By 苏剑林 | 2021-03-15 | 47967位读者 | 引用WGAN,即Wasserstein GAN,算是GAN史上一个比较重要的理论突破结果,它将GAN中两个概率分布的度量从f散度改为了Wasserstein距离,从而使得WGAN的训练过程更加稳定,而且生成质量通常也更好。Wasserstein距离跟最优传输相关,属于Integral Probability Metric(IPM)的一种,这类概率度量通常有着更优良的理论性质,因此WGAN的出现也吸引了很多人从最优传输和IPMs的角度来理解和研究GAN模型。
然而,最近Arxiv上的论文《Wasserstein GANs Work Because They Fail (to Approximate the Wasserstein Distance)》则指出,尽管WGAN是从Wasserstein GAN推导出来的,但是现在成功的WGAN并没有很好地近似Wasserstein距离,相反如果我们对Wasserstein距离做更好的近似,效果反而会变差。事实上,笔者一直以来也有这个疑惑,即Wasserstein距离本身并没有体现出它能提升GAN效果的必然性,该论文的结论则肯定了该疑惑,所以GAN能成功的原因依然很迷~
ChildTuning:试试把Dropout加到梯度上去?
By 苏剑林 | 2021-11-22 | 61038位读者 | 引用Dropout是经典的防止过拟合的思路了,想必很多读者已经了解过它。有意思的是,最近Dropout有点“老树发新芽”的感觉,出现了一些有趣的新玩法,比如最近引起过热议的SimCSE和R-Drop,尤其是在文章《又是Dropout两次!这次它做到了有监督任务的SOTA》中,我们发现简单的R-Drop甚至能媲美对抗训练,不得不说让人意外。
一般来说,Dropout是被加在每一层的输出中,或者是加在模型参数上,这是Dropout的两个经典用法。不过,最近笔者从论文《Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning》中学到了一种新颖的用法:加到梯度上面。
梯度加上Dropout?相信大部分读者都是没听说过的。那么效果究竟如何呢?让我们来详细看看。
输入梯度惩罚与参数梯度惩罚的一个不等式
By 苏剑林 | 2021-12-11 | 22303位读者 | 引用在本博客中,已经多次讨论过梯度惩罚相关内容了。从形式上来看,梯度惩罚项分为两种,一种是关于输入的梯度惩罚$\Vert\nabla_{\boldsymbol{x}} f(\boldsymbol{x};\boldsymbol{\theta})\Vert^2$,在《对抗训练浅谈:意义、方法和思考(附Keras实现)》、《泛化性乱弹:从随机噪声、梯度惩罚到虚拟对抗训练》等文章中我们讨论过,另一种则是关于参数的梯度惩罚$\Vert\nabla_{\boldsymbol{\theta}} f(\boldsymbol{x};\boldsymbol{\theta})\Vert^2$,在《从动力学角度看优化算法(五):为什么学习率不宜过小?》、《我们真的需要把训练集的损失降低到零吗?》等文章我们讨论过。
在相关文章中,两种梯度惩罚都声称有着提高模型泛化性能的能力,那么两者有没有什么联系呢?笔者从Google最近的一篇论文《The Geometric Occam's Razor Implicit in Deep Learning》学习到了两者的一个不等式,算是部分地回答了这个问题,并且感觉以后可能用得上,在此做个笔记。
最终结果
假设有一个$l$层的MLP模型,记为
\begin{equation}\boldsymbol{h}^{(t+1)} = g^{(t)}(\boldsymbol{W}^{(t)}\boldsymbol{h}^{(t)}+\boldsymbol{b}^{(t)})\end{equation}
其中$g^{(t)}$是当前层的激活函数,$t\in\{1,2,\cdots,l\}$,并记$\boldsymbol{h}^{(1)}$为$\boldsymbol{x}$,即模型的原始输入,为了方便后面的推导,我们记$\boldsymbol{z}^{(t+1)}=\boldsymbol{W}^{(t)}\boldsymbol{h}^{(t)}+\boldsymbol{b}^{(t)}$;参数全体为$\boldsymbol{\theta}=\{\boldsymbol{W}^{(1)},\boldsymbol{b}^{(1)},\boldsymbol{W}^{(2)},\boldsymbol{b}^{(2)},\cdots,\boldsymbol{W}^{(l)},\boldsymbol{b}^{(l)}\}$。设$f$是$\boldsymbol{h}^{(l+1)}$的任意标量函数,那么成立不等式
\begin{equation}\Vert\nabla_{\boldsymbol{x}} f\Vert^2\left(\frac{1 + \Vert \boldsymbol{h}^{(1)}\Vert^2}{\Vert\boldsymbol{W}^{(1)}\Vert^2 \Vert\nabla_{\boldsymbol{x}}\boldsymbol{h}^{(1)}\Vert^2}+\cdots+\frac{1 + \Vert \boldsymbol{h}^{(l)}\Vert^2}{\Vert\boldsymbol{W}^{(l)}\Vert^2 \Vert\nabla_{\boldsymbol{x}}\boldsymbol{h}^{(l)}\Vert^2}\right)\leq \Vert\nabla_{\boldsymbol{\theta}} f\Vert^2\label{eq:f}\end{equation}
多任务学习漫谈(二):行梯度之事
By 苏剑林 | 2022-02-08 | 47292位读者 | 引用在《多任务学习漫谈(一):以损失之名》中,我们从损失函数的角度初步探讨了多任务学习问题,最终发现如果想要结果同时具有缩放不变性和平移不变性,那么用梯度的模长倒数作为任务的权重是一个比较简单的选择。我们继而分析了,该设计等价于将每个任务的梯度单独进行归一化后再相加,这意味着多任务的“战场”从损失函数转移到了梯度之上:看似在设计损失函数,实则在设计更好的梯度,所谓“以损失之名,行梯度之事”。
那么,更好的梯度有什么标准呢?如何设计出更好的梯度呢?本文我们就从梯度的视角来理解多任务学习,试图直接从设计梯度的思路出发构建多任务学习算法。
整体思路
我们知道,对于单任务学习,常用的优化方法就是梯度下降,那么它是怎么推导的呢?同样的思路能不能直接用于多任务学习呢?这便是这一节要回答的问题。
梯度流:探索通向最小值之路
By 苏剑林 | 2023-06-16 | 25084位读者 | 引用在这篇文章中,我们将探讨一个被称为“梯度流(Gradient Flow)”的概念。简单来说,梯度流是将我们在用梯度下降法中寻找最小值的过程中的各个点连接起来,形成一条随(虚拟的)时间变化的轨迹,这条轨迹便被称作“梯度流”。在文章的后半部分,我们将重点讨论如何将梯度流的概念扩展到概率空间,从而形成“Wasserstein梯度流”,为我们理解连续性方程、Fokker-Planck方程等内容提供一个新的视角。
梯度下降
假设我们想搜索光滑函数$f(\boldsymbol{x})$的最小值,常见的方案是梯度下降(Gradient Descent),即按照如下格式进行迭代:
\begin{equation}\boldsymbol{x}_{t+1} = \boldsymbol{x}_t -\alpha \nabla_{\boldsymbol{x}_t}f(\boldsymbol{x}_t)\label{eq:gd-d}\end{equation}
如果$f(\boldsymbol{x})$关于$\boldsymbol{x}$是凸的,那么梯度下降通常能够找到最小值点;相反,则通常只能收敛到一个“驻点”——即梯度为0的点,比较理想的情况下能收敛到一个极小值(局部最小值)点。这里没有对极小值和最小值做严格区分,因为在深度学习中,即便是收敛到一个极小值点也是很难得的了。
Transformer升级之路:10、RoPE是一种β进制编码
By 苏剑林 | 2023-07-06 | 104650位读者 | 引用对关心如何扩展LLM的Context长度的读者来说,上周无疑是激动人心的一周,开源社区接连不断地出现令人振奋的成果。首先,网友@kaiokendev在他的项目SuperHOT中实验了“位置线性内插”的方案,显示通过非常少的长文本微调,就可以让已有的LLM处理Long Context。几乎同时,Meta也提出了同样的思路,带着丰富的实验结果发表在论文《Extending Context Window of Large Language Models via Positional Interpolation》上。惊喜还远不止此,随后网友@bloc97提出了NTK-aware Scaled RoPE,实现了不用微调就可以扩展Context长度的效果!
以上种种进展,尤其是NTK-aware Scaled RoPE,迫使笔者去重新思考RoPE的含义。经过分析,笔者发现RoPE的构造可以视为一种$\beta$进制编码,在这个视角之下,开源社区的这些进展可以理解为对进制编码编码的不同扩增方式。
最近评论