26 Jul

SimCLR在视觉无监督学习大放异彩以来,对比学习逐渐在CV乃至NLP中流行了起来,相关研究和工作越来越多。标准的对比学习的一个广为人知的缺点是需要比较大的batch_size(SimCLR在batch_size=4096时效果最佳),小batch_size的时候效果会明显降低,为此,后续工作的改进方向之一就是降低对大batch_size的依赖。那么,一个很自然的问题是:标准的对比学习在小batch_size时效果差的原因究竟是什么呢?

近日,一篇名为《Simpler, Faster, Stronger: Breaking The log-K Curse On Contrastive Learners With FlatNCE》对此问题作出了回答:因为浮点误差。看起来真的很让人难以置信,但论文的分析确实颇有道理,并且所提出的改进FlatNCE确实也工作得更好,让人不得不信服。

细微之处

接下来,笔者将按照自己的理解和记号来介绍原论文的主要内容。对比学习(Contrastive Learning)就不帮大家详细复习了,大体上来说,对于某个样本$x$,我们需要构建$K$个配对样本$y_1,y_2,\cdots,y_K$,其中$y_t$是正样本而其余都是负样本,然后分别给每个样本对$(x, y_i)$打分,分别记为$s_1,s_2,\cdots,s_K$,对比学习希望拉大正负样本对的得分差,通常直接用交叉熵作为损失:
\begin{equation}-\log \frac{e^{s_t}}{\sum\limits_i e^{s_i}} = \log \left(\sum_i e^{s_i}\right) - s_t = \log \left(1 + \sum_{i\neq t} e^{s_i - s_t}\right)\end{equation}

点击阅读全文...

1 Jul

又是Dropout两次!这次它做到了有监督任务的SOTA

关注NLP新进展的读者,想必对四月份发布的SimCSE印象颇深,它通过简单的“Dropout两次”来构造正样本进行对比学习,达到了无监督语义相似度任务的全面SOTA。无独有偶,最近的论文《R-Drop: Regularized Dropout for Neural Networks》提出了R-Drop,它将“Dropout两次”的思想用到了有监督任务中,每个实验结果几乎都取得了明显的提升。此外,笔者在自己的实验还发现,它在半监督任务上也能有不俗的表现。

R-Drop示意图

R-Drop示意图

小小的“Dropout两次”,居然跑出了“五项全能”的感觉,不得不令人惊讶。本文来介绍一下R-Drop,并分享一下笔者对它背后原理的思考。

点击阅读全文...

31 Aug

类别不平衡问题,也称为长尾分布问题,在本博客里已经有好几次相关讨论了,比如《从loss的硬截断、软化到focal loss》《将“softmax+交叉熵”推广到多标签分类问题》《通过互信息思想来缓解类别不平衡问题》。对于缓解类别不平衡,比较基本的方法就是调节样本权重,看起来“高端”一点的方法则是各种魔改loss了(比如Focal Loss、Dice Loss、Logits Adjustment等),本文希望比较系统地理解一下它们之间的联系。

长尾分布:少数类别的样本数目非常多,多数类别的样本数目非常少。

长尾分布:少数类别的样本数目非常多,多数类别的样本数目非常少。

从光滑准确率到交叉熵

这里的分析主要以sigmoid的2分类为主,但多数结论可以平行推广到softmax的多分类。设$x$为输入,$y\in\{0,1\}$为目标,$p_{\theta}(x) \in [0, 1]$为模型。理想情况下,当然是要评测什么指标,我们就去优化那个指标。对于分类问题来说,最朴素的指标当然就是准确率,但准确率并没有办法提供有效的梯度,所以不能直接来训练。

点击阅读全文...

31 Jul

我们真的需要把训练集的损失降低到零吗?

在训练模型的时候,我们需要损失函数一直训练到0吗?显然不用。一般来说,我们是用训练集来训练模型,但希望的是验证集的损失越小越好,而正常来说训练集的损失降低到一定值后,验证集的损失就会开始上升,因此没必要把训练集的损失降低到0。

既然如此,在已经达到了某个阈值之后,我们可不可以做点别的事情来提升模型性能呢?ICML 2020的论文《Do We Need Zero Training Loss After Achieving Zero Training Error?》回答了这个问题。不过论文的回答也仅局限在“是什么”这个层面上,并没很好地描述“为什么”,另外看了知乎上kid丶大佬的解读,也没找到自己想要的答案。因此自己分析了一下,记录在此。

左图:不加Flooding的训练示意图;右图:加了Flooding的训练示意图

左图:不加Flooding的训练示意图;右图:加了Flooding的训练示意图

点击阅读全文...

19 Jul

通过互信息思想来缓解类别不平衡问题

类别不平衡问题,也叫“长尾问题”,是机器学习面临的常见问题之一,尤其是来源于真实场景下的数据集,几乎都是类别不平衡的。大概在两年前,笔者也思考过这个问题,当时正好对“互信息”相关的内容颇有心得,所以构思了一种基于互信息思想的解决办法,但又想了一下,那思路似乎过于平凡,所以就没有深究。然而,前几天在arxiv上刷到Google的一篇文章《Long-tail learning via logit adjustment》,意外地发现里边包含了跟笔者当初的构思几乎一样的方法,这才意识到当初放弃的思路原来还能达到SOTA的水平~于是结合这篇论文,将笔者当初的构思过程整理于此,希望不会被读者嫌弃“马后炮”。

问题描述

这里主要关心的是单标签的多分类问题,假设有$1,2,\cdots,K$共$K$个候选类别,训练数据为$(x,y)\sim\mathcal{D}$,建模的分布为$p_{\theta}(y|x)$,那么我们的优化目标是最大似然,或者说最小化交叉熵,即
\begin{equation}\mathop{\arg\min}_{\theta}\,\mathbb{E}_{(x,y)\sim\mathcal{D}}[-\log p_{\theta}(y|x)]\end{equation}

点击阅读全文...

25 Apr

将“softmax+交叉熵”推广到多标签分类问题

一般来说,在处理常规的多分类问题时,我们会在模型的最后用一个全连接层输出每个类的分数,然后用softmax激活并用交叉熵作为损失函数。在这篇文章里,我们尝试将“softmax+交叉熵”方案推广到多标签分类场景,希望能得到用于多标签分类任务的、不需要特别调整类权重和阈值的loss。

类别不平衡

类别不平衡

单标签到多标签

一般来说,多分类问题指的就是单标签分类问题,即从$n$个候选类别中选$1$个目标类别。假设各个类的得分分别为$s_1,s_2,
\dots,s_n$,目标类为$t\in\{1,2,\dots,n\}$,那么所用的loss为
\begin{equation}-\log \frac{e^{s_t}}{\sum\limits_{i=1}^n e^{s_i}}= - s_t + \log \sum\limits_{i=1}^n e^{s_i}\label{eq:log-softmax}\end{equation}
这个loss的优化方向是让目标类的得分$s_t$变为$s_1,s_2,\dots,s_t$中的最大值。关于softmax的相关内容,还可以参考《寻求一个光滑的最大值函数》《函数光滑化杂谈:不可导函数的可导逼近》等文章。

点击阅读全文...

27 Jan

继续“让Keras更酷一些!”系列,让Keras来得更有趣些吧~

这次围绕着Keras的loss、metric、权重和进度条进行展开。

可以不要输出

一般我们用Keras定义一个模型,是这样子的:

x_in = Input(shape=(784,))
x = x_in
x = Dense(100, activation='relu')(x)
x = Dense(10, activation='softmax')(x)

model = Model(x_in, x)
model.compile(loss='categorical_crossentropy ',
              optimizer='adam',
              metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)

点击阅读全文...

6 Aug

“让Keras更酷一些!”:精巧的层与花式的回调

Keras伴我走来

回想起进入机器学习领域的这两三年来,Keras是一直陪伴在笔者的身边。要不是当初刚掉进这个坑时碰到了Keras这个这么易用的框架,能快速实现我的想法,我也不确定我是否能有毅力坚持下来,毕竟当初是theano、pylearn、caffe、torch等的天下,哪怕在今天它们对我来说仍然像天书一般。

后来为了拓展视野,我也去学习了一段时间的tensorflow,用纯tensorflow写过若干程序,但不管怎样,仍然无法割舍Keras。随着对Keras的了解的深入,尤其是花了一点时间研究过Keras的源码后,我发现Keras并没有大家诟病的那样“欠缺灵活性”。事实上,Keras那精巧的封装,可以让我们轻松实现很多复杂的功能。我越来越感觉,Keras像是一件非常精美的艺术品,充分体现了Keras的开发者们深厚的创作功力。

本文介绍Keras中自定义模型的一些内容,相对而言,这属于Keras进阶的内容,刚入门的朋友请暂时忽略。

层的自定义

这里介绍Keras中自定义层及其一些运用技巧,在这之中我们可以看到Keras层的精巧之处。

点击阅读全文...