MoE环游记:2、不患寡而患不均
By 苏剑林 | 2025-02-21 | 2623位读者 | 引用在上一篇文章《MoE环游记:1、从几何意义出发》中,我们介绍了MoE的一个几何诠释,旨在通过Dense模型的最佳逼近出发来推导和理解MoE。同时在文末我们也说了,给出MoE的计算公式仅仅是开始,训练一个实际有效的MoE模型还有很多细节补,比如本文要讨论的负载均衡(Load Balance)问题。
负载均衡,即“不患寡而患不均”,说白了就是让每个Expert都在干活,并且都在干尽可能一样多的活,避免某些Expert浪费算力。负载均衡既是充分利用训练算力的需求,也是尽可能发挥MoE大参数量潜力的需求。
需求分析
我们知道,MoE的基本形式是
\begin{equation}\boldsymbol{y} = \sum_{i\in \mathop{\text{argtop}}_k \boldsymbol{\rho}} \rho_i \boldsymbol{e}_i\end{equation}
三个球的交点坐标(三球交会定位)
By 苏剑林 | 2025-01-28 | 7852位读者 | 引用前几天笔者在思考一个问题时,联想到了三球交点问题,即给定三个球的球心坐标和半径,求这三个球的交点坐标。按理说这是一个定义清晰且简明的问题,并且具有鲜明的应用背景(比如卫星定位),应该早已有人给出“标准答案”才对。但笔者搜了一圈,发现不管是英文资料还是中文资料,都没有找到标准的求解流程。
当然,这并不是说这个问题有多难以至于没人能求解出来,事实上这是个早已被人解决的经典问题,笔者只是意外于似乎没有人以一种可读性比较好的方式将求解过程写到网上,所以本文试图补充这一点。
特殊情形
首先,设三个球的方程分别是
\begin{align}
&\text{球1:}\quad (\boldsymbol{x} - \boldsymbol{o}_1)^2 = r_1^2 \label{eq:s1} \\
&\text{球2:}\quad (\boldsymbol{x} - \boldsymbol{o}_2)^2 = r_2^2 \label{eq:s2} \\
&\text{球3:}\quad (\boldsymbol{x} - \boldsymbol{o}_3)^2 = r_3^2 \label{eq:s3} \\
\end{align}
低秩近似之路(五):CUR
By 苏剑林 | 2025-01-12 | 10816位读者 | 引用再次回到低秩近似之路上。在《低秩近似之路(四):ID》中,我们介绍了“插值分解(Interpolative Decomposition,ID)”,这是为矩阵$\boldsymbol{M}\in\mathbb{R}^{n\times m}$寻找$\boldsymbol{C}\boldsymbol{Z}$形式的近似的过程,其中$\boldsymbol{C}\in\mathbb{R}^{n\times r}$是矩阵$\boldsymbol{M}$的若干列,而$\boldsymbol{Z}\in\mathbb{R}^{r\times m}$是任意矩阵。
这篇文章我们将介绍CUR分解,它跟插值分解的思想一脉相承,都是以原始矩阵的行、列为“骨架”来构建原始矩阵的近似,跟ID只用行或列之一不同,CUR分解同时用到了行和列。
基本定义
其实这不是本站第一次出现CUR分解了。早在《Nyströmformer:基于矩阵分解的线性化Attention方案》我们就介绍过矩阵的Nyström近似,它实际上就是CUR分解,后来在《利用CUR分解加速交互式相似度模型的检索》还介绍了CUR分解在降低交互式相似度模型的检索复杂度的应用。
从谱范数梯度到新式权重衰减的思考
By 苏剑林 | 2024-12-25 | 15801位读者 | 引用在文章《Muon优化器赏析:从向量到矩阵的本质跨越》中,我们介绍了一个名为“Muon”的新优化器,其中一个理解视角是作为谱范数正则下的最速梯度下降,这似乎揭示了矩阵参数的更本质的优化方向。众所周知,对于矩阵参数我们经常也会加权重衰减(Weight Decay),它可以理解为$F$范数平方的梯度,那么从Muon的视角看,通过谱范数平方的梯度来构建新的权重衰减,会不会能起到更好的效果呢?
那么问题来了,谱范数的梯度或者说导数长啥样呢?用它来设计的新权重衰减又是什么样的?接下来我们围绕这些问题展开。
基础回顾
谱范数(Spectral Norm),又称“$2$范数”,是最常用的矩阵范数之一,相比更简单的$F$范数(Frobenius Norm),它往往能揭示一些与矩阵乘法相关的更本质的信号,这是因为它定义上就跟矩阵乘法相关:对于矩阵参数$\boldsymbol{W}\in\mathbb{R}^{n\times m}$,它的谱范数定义为
Muon优化器赏析:从向量到矩阵的本质跨越
By 苏剑林 | 2024-12-10 | 24932位读者 | 引用随着LLM时代的到来,学术界对于优化器的研究热情似乎有所减退。这主要是因为目前主流的AdamW已经能够满足大多数需求,而如果对优化器“大动干戈”,那么需要巨大的验证成本。因此,当前优化器的变化,多数都只是工业界根据自己的训练经验来对AdamW打的一些小补丁。
不过,最近推特上一个名为“Muon”的优化器颇为热闹,它声称比AdamW更为高效,且并不只是在Adam基础上的“小打小闹”,而是体现了关于向量与矩阵差异的一些值得深思的原理。本文让我们一起赏析一番。
从Hessian近似看自适应学习率优化器
By 苏剑林 | 2024-11-29 | 19674位读者 | 引用这几天在重温去年的Meta的一篇论文《A Theory on Adam Instability in Large-Scale Machine Learning》,里边给出了看待Adam等自适应学习率优化器的新视角:它指出梯度平方的滑动平均某种程度上近似于在估计Hessian矩阵的平方,从而Adam、RMSprop等优化器实际上近似于二阶的Newton法。
这个角度颇为新颖,而且表面上跟以往的一些Hessian近似有明显的差异,因此值得我们去学习和思考一番。
牛顿下降
设损失函数为$\mathcal{L}(\boldsymbol{\theta})$,其中待优化参数为$\boldsymbol{\theta}$,我们的优化目标是
\begin{equation}\boldsymbol{\theta}^* = \mathop{\text{argmin}}_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta})\label{eq:loss}\end{equation}
假设$\boldsymbol{\theta}$的当前值是$\boldsymbol{\theta}_t$,Newton法通过将损失函数展开到二阶来寻求$\boldsymbol{\theta}_{t+1}$:
\begin{equation}\mathcal{L}(\boldsymbol{\theta})\approx \mathcal{L}(\boldsymbol{\theta}_t) + \boldsymbol{g}_t^{\top}(\boldsymbol{\theta} - \boldsymbol{\theta}_t) + \frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\theta}_t)^{\top}\boldsymbol{\mathcal{H}}_t(\boldsymbol{\theta} - \boldsymbol{\theta}_t)\end{equation}
生成扩散模型漫谈(二十六):基于恒等式的蒸馏(下)
By 苏剑林 | 2024-11-22 | 24312位读者 | 引用继续回到我们的扩散系列。在《生成扩散模型漫谈(二十五):基于恒等式的蒸馏(上)》中,我们介绍了SiD(Score identity Distillation),这是一种不需要真实数据、也不需要从教师模型采样的扩散模型蒸馏方案,其形式类似GAN,但有着比GAN更好的训练稳定性。
SiD的核心是通过恒等变换来为学生模型构建更好的损失函数,这一点是开创性的,同时也遗留了一些问题。比如,SiD对损失函数的恒等变换是不完全的,如果完全变换会如何?如何从理论上解释SiD引入的$\lambda$的必要性?上个月放出的《Flow Generator Matching》(简称FGM)成功从更本质的梯度角度解释了$\lambda=0.5$的选择,而受到FGM启发,笔者则进一步发现了$\lambda = 1$的一种解释。
接下来我们将详细介绍SiD的上述理论进展。
Adam的epsilon如何影响学习率的Scaling Law?
By 苏剑林 | 2024-11-18 | 20380位读者 | 引用上一篇文章《当Batch Size增大时,学习率该如何随之变化?》我们从多个角度讨论了学习率与Batch Size之间的缩放规律,其中对于Adam优化器我们采用了SignSGD近似,这是分析Adam优化器常用的手段。那么一个很自然的问题就是:用SignSGD来近似Adam究竟有多科学呢?
我们知道,Adam优化器的更新量分母会带有一个$\epsilon$,初衷是预防除零错误,所以其值通常很接近于零,以至于我们做理论分析的时候通常选择忽略掉它。然而,当前LLM的训练尤其是低精度训练,我们往往会选择偏大的$\epsilon$,这导致在训练的中、后期$\epsilon$往往已经超过梯度平方大小,所以$\epsilon$的存在事实上已经不可忽略。
因此,这篇文章我们试图探索$\epsilon$如何影响Adam的学习率与Batch Size的Scaling Law,为相关问题提供一个参考的计算方案。
最近评论