Transformer升级之路:2、博采众长的旋转式位置编码
By 苏剑林 | 2021-03-23 | 294378位读者 |上一篇文章中,我们对原始的Sinusoidal位置编码做了较为详细的推导和理解,总的感觉是Sinusoidal位置编码是一种“想要成为相对位置编码的绝对位置编码”。一般来说,绝对位置编码具有实现简单、计算速度快等优点,而相对位置编码则直接地体现了相对位置信号,跟我们的直观理解吻合,实际性能往往也更好。由此可见,如果可以通过绝对位置编码的方式实现相对位置编码,那么就是“集各家之所长”、“鱼与熊掌兼得”了。Sinusoidal位置编码隐约做到了这一点,但并不够好。
本文将会介绍我们自研的Rotary Transformer(RoFormer)模型,它的主要改动是应用了笔者构思的“旋转式位置编码(Rotary Position Embedding,RoPE)”,这是一种配合Attention机制能达到“绝对位置编码的方式实现相对位置编码”的设计。而也正因为这种设计,它还是目前唯一一种可用于线性Attention的相对位置编码。
基本思路 #
在之前的文章《让研究人员绞尽脑汁的Transformer位置编码》中我们就简要介绍过RoPE,当时称之为“融合式”,本文则更加详细地介绍它的来源与性质。在RoPE中,我们的出发点就是“通过绝对位置编码的方式实现相对位置编码”,这样做既有理论上的优雅之处,也有实践上的实用之处,比如它可以拓展到线性Attention中就是主要因为这一点。
为了达到这个目的,我们假设通过下述运算来给$\boldsymbol{q},\boldsymbol{k}$添加绝对位置信息:
\begin{equation}\tilde{\boldsymbol{q}}_m = \boldsymbol{f}(\boldsymbol{q}, m), \quad\tilde{\boldsymbol{k}}_n = \boldsymbol{f}(\boldsymbol{k}, n)\end{equation}
也就是说,我们分别为$\boldsymbol{q},\boldsymbol{k}$设计操作$\boldsymbol{f}(\cdot, m),\boldsymbol{f}(\cdot, n)$,使得经过该操作后,$\tilde{\boldsymbol{q}}_m,\tilde{\boldsymbol{k}}_n$就带有了位置$m,n$的绝对位置信息。Attention的核心运算是内积,所以我们希望的内积的结果带有相对位置信息,因此假设存在恒等关系:
\begin{equation}\langle\boldsymbol{f}(\boldsymbol{q}, m), \boldsymbol{f}(\boldsymbol{k}, n)\rangle = g(\boldsymbol{q},\boldsymbol{k},m-n)\end{equation}
所以我们要求出该恒等式的一个(尽可能简单的)解。求解过程还需要一些初始条件,显然我们可以合理地设$\boldsymbol{f}(\boldsymbol{q}, 0)=\boldsymbol{q}$和$\boldsymbol{f}(\boldsymbol{k}, 0)=\boldsymbol{k}$。
求解过程 #
同上一篇思路一样,我们先考虑二维情形,然后借助复数来求解。在复数中有$\langle\boldsymbol{q},\boldsymbol{k}\rangle=\text{Re}[\boldsymbol{q}\boldsymbol{k}^*]$,$\text{Re}[]$代表复数的实部,所以我们有
\begin{equation}\text{Re}[\boldsymbol{f}(\boldsymbol{q}, m)\boldsymbol{f}^*(\boldsymbol{k}, n)] = g(\boldsymbol{q},\boldsymbol{k},m-n)\end{equation}
简单起见,我们假设存在复数$\boldsymbol{g}(\boldsymbol{q},\boldsymbol{k},m-n)$,使得$\boldsymbol{f}(\boldsymbol{q}, m)\boldsymbol{f}^*(\boldsymbol{k}, n) = \boldsymbol{g}(\boldsymbol{q},\boldsymbol{k},m-n)$,然后我们用复数的指数形式,设
\begin{equation}\begin{aligned}
\boldsymbol{f}(\boldsymbol{q}, m) =&\, R_f (\boldsymbol{q}, m)e^{\text{i}\Theta_f(\boldsymbol{q}, m)} \\
\boldsymbol{f}(\boldsymbol{k}, n) =&\, R_f (\boldsymbol{k}, n)e^{\text{i}\Theta_f(\boldsymbol{k}, n)} \\
\boldsymbol{g}(\boldsymbol{q}, \boldsymbol{k}, m-n) =&\, R_g (\boldsymbol{q}, \boldsymbol{k}, m-n)e^{\text{i}\Theta_g(\boldsymbol{q}, \boldsymbol{k}, m-n)} \\
\end{aligned}\end{equation}
那么代入方程后就得到方程组
\begin{equation}\begin{aligned}
R_f (\boldsymbol{q}, m) R_f (\boldsymbol{k}, n) =&\, R_g (\boldsymbol{q}, \boldsymbol{k}, m-n) \\
\Theta_f (\boldsymbol{q}, m) - \Theta_f (\boldsymbol{k}, n) =&\, \Theta_g (\boldsymbol{q}, \boldsymbol{k}, m-n)
\end{aligned}\end{equation}
对于第一个方程,代入$m=n$得到
\begin{equation}R_f (\boldsymbol{q}, m) R_f (\boldsymbol{k}, m) = R_g (\boldsymbol{q}, \boldsymbol{k}, 0) = R_f (\boldsymbol{q}, 0) R_f (\boldsymbol{k}, 0) = \Vert \boldsymbol{q}\Vert \Vert \boldsymbol{k}\Vert\end{equation}
最后一个等号源于初始条件$\boldsymbol{f}(\boldsymbol{q}, 0)=\boldsymbol{q}$和$\boldsymbol{f}(\boldsymbol{k}, 0)=\boldsymbol{k}$。所以现在我们可以很简单地设$R_f (\boldsymbol{q}, m)=\Vert \boldsymbol{q}\Vert, R_f (\boldsymbol{k}, m)=\Vert \boldsymbol{k}\Vert$,即它不依赖于$m$。至于第二个方程,同样代入$m=n$得到
\begin{equation}\Theta_f (\boldsymbol{q}, m) - \Theta_f (\boldsymbol{k}, m) = \Theta_g (\boldsymbol{q}, \boldsymbol{k}, 0) = \Theta_f (\boldsymbol{q}, 0) - \Theta_f (\boldsymbol{k}, 0) = \Theta (\boldsymbol{q}) - \Theta (\boldsymbol{k})\end{equation}
这里的$\Theta (\boldsymbol{q}),\Theta (\boldsymbol{k})$是$\boldsymbol{q},\boldsymbol{k}$本身的幅角,最后一个等号同样源于初始条件。根据上式得到$\Theta_f (\boldsymbol{q}, m) - \Theta (\boldsymbol{q}) = \Theta_f (\boldsymbol{k}, m) - \Theta (\boldsymbol{k})$,所以$\Theta_f (\boldsymbol{q}, m) - \Theta (\boldsymbol{q})$应该是一个只与$m$相关、跟$\boldsymbol{q}$无关的函数,记为$\varphi(m)$,即$\Theta_f (\boldsymbol{q}, m) = \Theta (\boldsymbol{q}) + \varphi(m)$。接着代入$n=m-1$,整理得到
\begin{equation}\varphi(m) - \varphi(m-1) = \Theta_g (\boldsymbol{q}, \boldsymbol{k}, 1) + \Theta (\boldsymbol{k}) - \Theta (\boldsymbol{q})\end{equation}
即$\{\varphi(m)\}$是等差数列,设右端为$\theta$,那么就解得$\varphi(m)=m\theta$。
编码形式 #
综上,我们得到二维情况下用复数表示的RoPE:
\begin{equation}
\boldsymbol{f}(\boldsymbol{q}, m) = R_f (\boldsymbol{q}, m)e^{\text{i}\Theta_f(\boldsymbol{q}, m)}
= \Vert q\Vert e^{\text{i}(\Theta(\boldsymbol{q}) + m\theta)} = \boldsymbol{q} e^{\text{i}m\theta}\end{equation}
根据复数乘法的几何意义,该变换实际上对应着向量的旋转,所以我们称之为“旋转式位置编码”,它还可以写成矩阵形式:
\begin{equation}
\boldsymbol{f}(\boldsymbol{q}, m) =\begin{pmatrix}\cos m\theta & -\sin m\theta\\ \sin m\theta & \cos m\theta\end{pmatrix} \begin{pmatrix}q_0 \\ q_1\end{pmatrix}\end{equation}
由于内积满足线性叠加性,因此任意偶数维的RoPE,我们都可以表示为二维情形的拼接,即
\begin{equation}\scriptsize{\underbrace{\begin{pmatrix}
\cos m\theta_0 & -\sin m\theta_0 & 0 & 0 & \cdots & 0 & 0 \\
\sin m\theta_0 & \cos m\theta_0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cos m\theta_1 & -\sin m\theta_1 & \cdots & 0 & 0 \\
0 & 0 & \sin m\theta_1 & \cos m\theta_1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & \cos m\theta_{d/2-1} & -\sin m\theta_{d/2-1} \\
0 & 0 & 0 & 0 & \cdots & \sin m\theta_{d/2-1} & \cos m\theta_{d/2-1} \\
\end{pmatrix}}_{\boldsymbol{\mathcal{R}}_m} \begin{pmatrix}q_0 \\ q_1 \\ q_2 \\ q_3 \\ \vdots \\ q_{d-2} \\ q_{d-1}\end{pmatrix}}\end{equation}
也就是说,给位置为$m$的向量$\boldsymbol{q}$乘上矩阵$\boldsymbol{\mathcal{R}}_m$、位置为$n$的向量$\boldsymbol{k}$乘上矩阵$\boldsymbol{\mathcal{R}}_n$,用变换后的$\boldsymbol{Q},\boldsymbol{K}$序列做Attention,那么Attention就自动包含相对位置信息了,因为成立恒等式:
\begin{equation}(\boldsymbol{\mathcal{R}}_m \boldsymbol{q})^{\top}(\boldsymbol{\mathcal{R}}_n \boldsymbol{k}) = \boldsymbol{q}^{\top} \boldsymbol{\mathcal{R}}_m^{\top}\boldsymbol{\mathcal{R}}_n \boldsymbol{k} = \boldsymbol{q}^{\top} \boldsymbol{\mathcal{R}}_{n-m} \boldsymbol{k}\end{equation}
值得指出的是,$\boldsymbol{\mathcal{R}}_m$是一个正交矩阵,它不会改变向量的模长,因此通常来说它不会改变原模型的稳定性。
由于$\boldsymbol{\mathcal{R}}_m$的稀疏性,所以直接用矩阵乘法来实现会很浪费算力,推荐通过下述方式来实现RoPE:
\begin{equation}\begin{pmatrix}q_0 \\ q_1 \\ q_2 \\ q_3 \\ \vdots \\ q_{d-2} \\ q_{d-1}
\end{pmatrix}\otimes\begin{pmatrix}\cos m\theta_0 \\ \cos m\theta_0 \\ \cos m\theta_1 \\ \cos m\theta_1 \\ \vdots \\ \cos m\theta_{d/2-1} \\ \cos m\theta_{d/2-1}
\end{pmatrix} + \begin{pmatrix}-q_1 \\ q_0 \\ -q_3 \\ q_2 \\ \vdots \\ -q_{d-1} \\ q_{d-2}
\end{pmatrix}\otimes\begin{pmatrix}\sin m\theta_0 \\ \sin m\theta_0 \\ \sin m\theta_1 \\ \sin m\theta_1 \\ \vdots \\ \sin m\theta_{d/2-1} \\ \sin m\theta_{d/2-1}
\end{pmatrix}\end{equation}
其中$\otimes$是逐位对应相乘,即Numpy、Tensorflow等计算框架中的$*$运算。从这个实现也可以看到,RoPE可以视为是乘性位置编码的变体。
远程衰减 #
可以看到,RoPE形式上和Sinusoidal位置编码有点相似,只不过Sinusoidal位置编码是加性的,而RoPE可以视为乘性的。在$\theta_i$的选择上,我们同样沿用了Sinusoidal位置编码的方案,即$\theta_i = 10000^{-2i/d}$,它可以带来一定的远程衰减性。
具体证明如下:将$\boldsymbol{q},\boldsymbol{k}$两两分组后,它们加上RoPE后的内积可以用复数乘法表示为
\begin{equation}
(\boldsymbol{\mathcal{R}}_m \boldsymbol{q})^{\top}(\boldsymbol{\mathcal{R}}_n \boldsymbol{k}) = \text{Re}\left[\sum_{i=0}^{d/2-1}\boldsymbol{q}_{[2i:2i+1]}\boldsymbol{k}_{[2i:2i+1]}^* e^{\text{i}(m-n)\theta_i}\right]\end{equation}
记$h_i = \boldsymbol{q}_{[2i:2i+1]}\boldsymbol{k}_{[2i:2i+1]}^*, S_j = \sum\limits_{i=0}^{j-1} e^{\text{i}(m-n)\theta_i}$,并约定$h_{d/2}=0,S_0=0$,那么由Abel变换(分部求和法)可以得到:
\begin{equation}\sum_{i=0}^{d/2-1}\boldsymbol{q}_{[2i:2i+1]}\boldsymbol{k}_{[2i:2i+1]}^* e^{\text{i}(m-n)\theta_i} = \sum_{i=0}^{d/2-1} h_i (S_{i
+1} - S_i) = -\sum_{i=0}^{d/2-1} S_{i+1}(h_{i+1} - h_i)\end{equation}
所以
\begin{equation}\begin{aligned}
\left|\sum_{i=0}^{d/2-1}\boldsymbol{q}_{[2i:2i+1]}\boldsymbol{k}_{[2i:2i+1]}^* e^{\text{i}(m-n)\theta_i}\right| =&\, \left|\sum_{i=0}^{d/2-1} S_{i+1}(h_{i+1} - h_i)\right| \\
\leq&\, \sum_{i=0}^{d/2-1} |S_{i+1}| |h_{i+1} - h_i| \\
\leq&\, \left(\max_i |h_{i+1} - h_i|\right)\sum_{i=0}^{d/2-1} |S_{i+1}|
\end{aligned}\end{equation}
因此我们可以考察$\frac{1}{d/2}\sum\limits_{i=1}^{d/2} |S_i|$随着相对距离的变化情况来作为衰减性的体现,Mathematica代码如下:
d = 128;
\[Theta][t_] = 10000^(-2*t/d);
f[m_] = Sum[
Norm[Sum[Exp[I*m*\[Theta][i]], {i, 0, j}]], {j, 0, d/2 - 1}]/(d/2);
Plot[f[m], {m, 0, 256}, AxesLabel -> {相对距离, 相对大小}]
结果如下图:
从图中我们可以可以看到随着相对距离的变大,内积结果有衰减趋势的出现。因此,选择$\theta_i = 10000^{-2i/d}$,确实能带来一定的远程衰减性。当然,同上一篇文章说的一样,能带来远程衰减性的不止这个选择,几乎任意的光滑单调函数都可以,这里只是沿用了已有的选择而已。笔者还试过以$\theta_i = 10000^{-2i/d}$为初始化,将$\theta_i$视为可训练参数,然后训练一段时间后发现$\theta_i$并没有显著更新,因此干脆就直接固定$\theta_i = 10000^{-2i/d}$了。
线性场景 #
最后,我们指出,RoPE是目前唯一一种可以用于线性Attention的相对位置编码。这是因为其他的相对位置编码,都是直接基于Attention矩阵进行操作的,但是线性Attention并没有事先算出Attention矩阵,因此也就不存在操作Attention矩阵的做法,所以其他的方案无法应用到线性Attention中。而对于RoPE来说,它是用绝对位置编码的方式来实现相对位置编码,不需要操作Attention矩阵,因此有了应用到线性Attention的可能性。
关于线性Attention的介绍,这里不再重复,有需要的读者请参考《线性Attention的探索:Attention必须有个Softmax吗?》。线性Attention的常见形式是:
\begin{equation}Attention(\boldsymbol{Q},\boldsymbol{K},\boldsymbol{V})_i = \frac{\sum\limits_{j=1}^n \text{sim}(\boldsymbol{q}_i, \boldsymbol{k}_j)\boldsymbol{v}_j}{\sum\limits_{j=1}^n \text{sim}(\boldsymbol{q}_i, \boldsymbol{k}_j)} = \frac{\sum\limits_{j=1}^n \phi(\boldsymbol{q}_i)^{\top} \varphi(\boldsymbol{k}_j)\boldsymbol{v}_j}{\sum\limits_{j=1}^n \phi(\boldsymbol{q}_i)^{\top} \varphi(\boldsymbol{k}_j)}\end{equation}
其中$\phi,\varphi$是值域非负的激活函数。可以看到,线性Attention也是基于内积的,所以很自然的想法是可以将RoPE插入到内积中:
\begin{equation}\frac{\sum\limits_{j=1}^n [\boldsymbol{\mathcal{R}}_i\phi(\boldsymbol{q}_i)]^{\top} [\boldsymbol{\mathcal{R}}_j\varphi(\boldsymbol{k}_j)]\boldsymbol{v}_j}{\sum\limits_{j=1}^n [\boldsymbol{\mathcal{R}}_i\phi(\boldsymbol{q}_i)]^{\top} [\boldsymbol{\mathcal{R}}_j\varphi(\boldsymbol{k}_j)]}\end{equation}
但这样存在的问题是,内积$[\boldsymbol{\mathcal{R}}_i\phi(\boldsymbol{q}_i)]^{\top} [\boldsymbol{\mathcal{R}}_j\varphi(\boldsymbol{k}_j)]$可能为负数,因此它不再是常规的概率注意力,而且分母有为0的风险,可能会带来优化上的不稳定。考虑到$\boldsymbol{\mathcal{R}}_i,\boldsymbol{\mathcal{R}}_j$都是正交矩阵,它不改变向量的模长,因此我们可以抛弃常规的概率归一化要求,使用如下运算作为一种新的线性Attention:
\begin{equation}\frac{\sum\limits_{j=1}^n [\boldsymbol{\mathcal{R}}_i\phi(\boldsymbol{q}_i)]^{\top} [\boldsymbol{\mathcal{R}}_j\varphi(\boldsymbol{k}_j)]\boldsymbol{v}_j}{\sum\limits_{j=1}^n \phi(\boldsymbol{q}_i)^{\top} \varphi(\boldsymbol{k}_j)}\end{equation}
也就是说,RoPE只插入分子中,而分母则不改变,这样的注意力不再是基于概率的(注意力矩阵不再满足非负归一性),但它某种意义上来说也是一个归一化方案,而且也没有证据表明非概率式的注意力就不好(比如Nyströmformer也算是没有严格依据概率分布的方式构建注意力),所以我们将它作为候选方案之一进行实验,而我们初步的实验结果显示这样的线性Attention也是有效的。
此外,笔者在《线性Attention的探索:Attention必须有个Softmax吗?》中还提出过另外一种线性Attention方案:$\text{sim}(\boldsymbol{q}_i, \boldsymbol{k}_j) = 1 + \left( \frac{\boldsymbol{q}_i}{\Vert \boldsymbol{q}_i\Vert}\right)^{\top}\left(\frac{\boldsymbol{k}_j}{\Vert \boldsymbol{k}_j\Vert}\right)$,它不依赖于值域的非负性,而RoPE也不改变模长,因此RoPE可以直接应用于此类线性Attention,并且不改变它的概率意义。
模型开源 #
RoFormer的第一版模型,我们已经完成训练并开源到了Github中:
简单来说,RoFormer是一个绝对位置编码替换为RoPE的WoBERT模型,它跟其他模型的结构对比如下:
\begin{array}{c|cccc}
\hline
& \text{BERT} & \text{WoBERT} & \text{NEZHA} & \text{RoFormer} \\
\hline
\text{token单位} & \text{字} & \text{词} & \text{字} & \text{词} & \\
\text{位置编码} & \text{绝对位置} & \text{绝对位置} & \text{经典式相对位置} & \text{RoPE}\\
\hline
\end{array}
在预训练上,我们以WoBERT Plus为基础,采用了多个长度和batch size交替训练的方式,让模型能提前适应不同的训练场景:
\begin{array}{c|ccccc}
\hline
& \text{maxlen} & \text{batch size} & \text{训练步数} & \text{最终loss} & \text{最终acc}\\
\hline
1 & 512 & 256 & 20\text{万} & 1.73 & 65.0\%\\
2 & 1536 & 256 & 1.25\text{万} & 1.61 & 66.8\%\\
3 & 256 & 256 & 12\text{万} & 1.75 & 64.6\%\\
4 & 128 & 512 & 8\text{万} & 1.83 & 63.4\%\\
5 & 1536 & 256 & 1\text{万} & 1.58 & 67.4\%\\
6 & 512 & 512 & 3\text{万} & 1.66 & 66.2\%\\
\hline
\end{array}
从表格还可以看到,增大序列长度,预训练的准确率反而有所提升,这侧面体现了RoFormer长文本语义的处理效果,也体现了RoPE具有良好的外推能力。在短文本任务上,RoFormer与WoBERT的表现类似,RoFormer的主要特点是可以直接处理任意长的文本。下面是我们在CAIL2019-SCM任务上的实验结果:
\begin{array}{c|cc}
\hline
& \text{验证集} & \text{测试集} \\
\hline
\text{BERT-512} & 64.13\% & 67.77\% \\
\text{WoBERT-512} & 64.07\% & 68.10\% \\
\text{RoFormer-512} & 64.13\% & 68.29\% \\
\text{RoFormer-1024} & \textbf{66.07%} & \textbf{69.79%} \\
\hline
\end{array}
其中$\text{-}$后面的参数是微调时截断的maxlen,可以看到RoFormer确实能较好地处理长文本语义,至于设备要求,在24G显存的卡上跑maxlen=1024,batch_size可以跑到8以上。目前中文任务中笔者也就找到这个任务比较适合作为长文本能力的测试,所以长文本方面只测了这个任务,欢迎读者进行测试或推荐其他评测任务。
当然,尽管理论上RoFormer能处理任意长度的序列,但目前RoFormer还是具有平方复杂度的,我们也正在训练基于线性Attention的RoFormer模型,实验完成后也会开源放出,请大家期待。
(注:RoPE和RoFormer已经整理成文《RoFormer: Enhanced Transformer with Rotary Position Embedding》提交到了Arxiv,欢迎使用和引用哈哈~)
文章小结 #
本文介绍了我们自研的旋转式位置编码RoPE以及对应的预训练模型RoFormer。从理论上来看,RoPE与Sinusoidal位置编码有些相通之处,但RoPE不依赖于泰勒展开,更具严谨性与可解释性;从预训练模型RoFormer的结果来看,RoPE具有良好的外推性,应用到Transformer中体现出较好的处理长文本的能力。此外,RoPE还是目前唯一一种可用于线性Attention的相对位置编码。
转载到请包括本文地址:https://kexue.fm/archives/8265
更详细的转载事宜请参考:《科学空间FAQ》
如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。
如果您觉得本文还不错,欢迎分享/打赏本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!
如果您需要引用本文,请参考:
苏剑林. (Mar. 23, 2021). 《Transformer升级之路:2、博采众长的旋转式位置编码 》[Blog post]. Retrieved from https://kexue.fm/archives/8265
@online{kexuefm-8265,
title={Transformer升级之路:2、博采众长的旋转式位置编码},
author={苏剑林},
year={2021},
month={Mar},
url={\url{https://kexue.fm/archives/8265}},
}
April 30th, 2024
您好,苏工。RoFormer - Enhanced Transformer with Rotary Position Embedding (2104.09864 v5, Jianlin Su) 中P8关于“RoPE的远程衰减性”得出的结论可能需要进一步严谨。
我这个图在Maple中用d=512画出来的。横轴是m-n,范围是50~1.6d,纵轴是Rel UB。
图片:http://14.29.193.103:81/1.png
有三个问题值得商榷:
1. P8, the value of $\frac {1} {d/2} \sum_{i=1}^{d/2}\left| S_i \right| $ decay with the relative distance $m - n$ increases ... 这个结论缺乏数学证据。其实从我的图的数值可以看出,在m-n超过1个d的时候,UB上下抖动非常厉害。如红点右侧的曲线中,大量点明显高于红线。此时很难说UB在decay。
2、m-n越大,其实UB越不稳定,抖动程度似乎进一步加剧,没有数学中收敛的迹象。
3、您P8Fig2使用的是d=128,当m-n大约为1.6d时候,UB抖动的低点已经接近0,但我的图用d=256,UB的最低点此时都明显大于10.
以下是我的验证代码:http://14.29.193.103:81/2.png
你的结果没毛病,但有几个实际的细节:
1、我们所验证的只是上界的远程衰减性质,实际情况大概率会好一些;
2、模型可以通过训练使得随距离的衰减更平滑一些,即震荡更少一些;
3、当然,对于足够大的maxlen,主流结论是需要增大10000这个base,使得衰减变得更慢,衰减区间变得更大;
4、在训练区间之外,震荡性质就无法保证了,所以这也是RoPE无法长度外推到任意距离的主要原因;
5、目前我的直觉是RoPE的适当震荡,是它效果比较好的主要原因,相比alibi这种单调衰减,它也许提供了更多的可能性。
链接中的图片好像打不开了
过了这么久了,打不开也合理,毕竟这看上去就只是临时链接。
May 9th, 2024
[...]该部分内容参考了 苏剑成的博客。苏剑成是RoPE的发明者。[...]
July 11th, 2024
苏神好,我想请教一下公式12,self-attention 不应该是 q 乘以 k 的转置么
没区别了的,只是另一种写法,最后得到的都是n*n的attention矩阵
看你假设$\boldsymbol{q},\boldsymbol{k}$是什么向量了,本文采用了一般的数学习惯,假设$\boldsymbol{q},\boldsymbol{k}$是列向量,那么$\boldsymbol{q}^{\top}\boldsymbol{k}$才是它们的内积,如果假设它们是行向量,那么就应该是$\boldsymbol{q}\boldsymbol{k}^{\top}$
August 17th, 2024
q,k是复数向量,< q,k >还是复数,Re(q,k*)是实数,两者为什么相等啊
对于$q=a+b\text{i},k=c+d\text{i}$,$\langle q,k\rangle$的定义就是$ac + bd$,它是一个实数。也就是说,只是借助复数的运算规则来解决实数的内积问题,并不是泛化到复内积。
$\boldsymbol{q}$即表示向量,又表示复数,确实挺奇怪的,感觉可以用加粗的$\boldsymbol{q}$表示向量$(a,b)$,不加粗的$q$表示复数$a+bi$会好一点
这叫做同构,不奇怪。
September 12th, 2024
苏神您好,
我的问题是关于式(15),这一步中我看到了类似cumsum的操作:
$$\sum_{i=0}^{d/2-1}|S_{i+1}|,~~~S_{i+1}=\sum_{j=0}^i e^{i(m-n)\theta_j}$$
这个cumsum操作在hidden states的dim维度进行,它的物理意义是什么?我没有太想清楚
$\theta_i = b^{-2i/d}$是关于dim $i$的一个单调函数,所以某种意义上来说,加入RoPE后已经给dims排了个序,因此可以沿着dims求和(来构造一个比较宽松的上界不等式)
October 13th, 2024
苏神,https://zhuanlan.zhihu.com/p/975380493
ROPE位置编码模式下,q、k的分布(均值与方差)对注意力远程衰减的影响,想请教下你的看法
大家对远程衰减可能有些误解,也可能是因为当初我用了远程衰减这个词不大恰当。首先远程衰减只是一个局部性质,明显的衰减只发生在某个token的局部之中,比如邻近的100个token内,再远的话其实整体上围绕着0震荡,并不会再明显下降了,注意这里的0是logits的0,softmax之后并不是0。
然后,RoPE的这个远程衰减不等式,表明RoPE能够加快模型形成这种局部衰减特性,从而能提高收敛速度等。个人认为,RoPE之所以能对Long Context更有利,正是因为RoPE只是“旋转”,它一不改变向量模长,二没有引入显式的注意力偏置(比如像ALIBI之类的显式远程衰减)。
December 6th, 2024
苏老师,请问在公式3的地方,说明了复数的内积是对一复数与另一复数的共轭的乘积取实部,但是公式3下面马上又假设了存在复数g()满足g()=两个复数的内积,且后面也用指数形式的复数表示了g(),后面证明也没有用到(除了最后远程衰减用到了,那这里取实部的意义是什么呢?
$\boldsymbol{f}(\boldsymbol{q}, m)\boldsymbol{f}^*(\boldsymbol{k}, n) = \boldsymbol{g}(\boldsymbol{q},\boldsymbol{k},m-n)$中的是$\boldsymbol{g}$(加粗),表示一个复数;式$(3)$的是$g$(没加粗),表示一个实数。
式$(3)$是出发点,$\boldsymbol{f}(\boldsymbol{q}, m)\boldsymbol{f}^*(\boldsymbol{k}, n) = \boldsymbol{g}(\boldsymbol{q},\boldsymbol{k},m-n)$是式$(3)$的一个充分条件,而我们只需要求一个特解就行,所以充分条件足矣。
感谢苏老师耐心的讲解。
我明白只要找出一个解即可,我的问题其实是:不需要公式3及其前面的两行,只需要说明考虑二维的情况,然后从公式4的部分开始,也能推到出后续的结论,所以不太明白公式3这里这里说明复数内积定义为实部的意义
你是不是忘记我们要做啥了?我们要做的是“给基于内积的attention设计位置编码”,不从内积出发从哪出发?复数只是一个求解手段,推理顺序是先有内积、然后内积的复数表示、再然后去掉Re,一步步来的。
December 17th, 2024
苏老师好,我在进行RoPE实验的时候,随机初始化两个512维的向量K和Q,固定Q,不断旋转K,内积并没有观察到远程衰减,但是旋转后的K和原本的K,是可以观察到远程衰减的,是哪个实验步骤用问题,还是说K和Q的初始化有什么前提条件?