历史总是惊人地相似。当初笔者在写《生成扩散模型漫谈(十四):构建ODE的一般步骤(上)》(当时还没有“上”这个后缀)时,以为自己已经搞清楚了构建ODE式扩散的一般步骤,结果读者 @gaohuazuo 就给出了一个新的直观有效的方案,这直接导致了后续《生成扩散模型漫谈(十四):构建ODE的一般步骤(中)》(当时后缀是“下”)。而当笔者以为事情已经终结时,却发现ICLR2023的论文《Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow》又给出了一个构建ODE式扩散模型的新方案,其简洁、直观的程度简直前所未有,令人拍案叫绝。所以笔者只好默默将前一篇的后缀改为“中”,然后写了这个“下”篇来分享这一新的结果。

直观结果 #

我们知道,扩散模型是一个$\boldsymbol{x}_T\to \boldsymbol{x}_0$的演化过程,而ODE式扩散模型则指定演化过程按照如下ODE进行:
\begin{equation}\frac{d\boldsymbol{x}_t}{dt}=\boldsymbol{f}_t(\boldsymbol{x}_t)\label{eq:ode}\end{equation}
而所谓构建ODE式扩散模型,就是要设计一个函数$\boldsymbol{f}_t(\boldsymbol{x}_t)$,使其对应的演化轨迹构成给定分布$p_T(\boldsymbol{x}_T)$、$p_0(\boldsymbol{x}_0)$之间的一个变换。说白了,我们希望从$p_T(\boldsymbol{x}_T)$中随机采样一个$\boldsymbol{x}_T$,然后按照上述ODE向后演化得到的$\boldsymbol{x}_0$是$\sim p_0(\boldsymbol{x}_0)$的。

原论文的思路非常简单,随机选定$\boldsymbol{x}_0\sim p_0(\boldsymbol{x}_0),\boldsymbol{x}_T\sim p_T(\boldsymbol{x}_T)$,假设它们按照轨迹
\begin{equation}\boldsymbol{x}_t = \boldsymbol{\varphi}_t(\boldsymbol{x}_0, \boldsymbol{x}_T)\label{eq:track}\end{equation}
进行变换。这个轨迹是一个已知的函数,是我们自行设计的部分,理论上只要满足
\begin{equation}\boldsymbol{x}_0 = \boldsymbol{\varphi}_0(\boldsymbol{x}_0, \boldsymbol{x}_T),\quad \boldsymbol{x}_T = \boldsymbol{\varphi}_T(\boldsymbol{x}_0, \boldsymbol{x}_T)\end{equation}
的连续函数都可以。接着我们就可以写出它满足的微分方程:
\begin{equation}\frac{d\boldsymbol{x}_t}{dt} = \frac{\partial \boldsymbol{\varphi}_t(\boldsymbol{x}_0, \boldsymbol{x}_T)}{\partial t}\label{eq:fake-ode}\end{equation}
但这个微分方程是不实用的,因为我们想要的是给定$\boldsymbol{x}_T$来生成$\boldsymbol{x}_0$,但它右端却是$\boldsymbol{x}_0$的函数(如果已知$\boldsymbol{x}_0$就完事了),只有像式$\eqref{eq:ode}$那样右端只含有$\boldsymbol{x}_t$的ODE(单从因果关系来看,理论上也可以包含$\boldsymbol{x}_T$,但我们一般不考虑这种情况)才能进行实用的演化。那么,一个直观又“异想天开”的想法是:学一个函数$\boldsymbol{v}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t)$尽量逼近上式右端!为此,我们优化如下目标:
\begin{equation}\mathbb{E}_{\boldsymbol{x}_0\sim p_0(\boldsymbol{x}_0),\boldsymbol{x}_T\sim p_T(\boldsymbol{x}_T)}\left[\left\Vert \boldsymbol{v}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t) - \frac{\partial \boldsymbol{\varphi}_t(\boldsymbol{x}_0, \boldsymbol{x}_T)}{\partial t}\right\Vert^2\right] \label{eq:objective}
\end{equation}
由于$\boldsymbol{v}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t)$尽量逼近了$\frac{\partial \boldsymbol{\varphi}_t(\boldsymbol{x}_0, \boldsymbol{x}_T)}{\partial t}$,所以我们认为将方程$\eqref{eq:fake-ode}$的右端替换为$\boldsymbol{v}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t)$也是成立的,这就得到实用的扩散ODE:
\begin{equation}\frac{d\boldsymbol{x}_t}{dt} = \boldsymbol{v}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t)\label{eq:s-ode}\end{equation}

简单例子 #

作为简单的例子,我们设$T=1$,并设变化轨迹是直线
\begin{equation}\boldsymbol{x}_t = \boldsymbol{\varphi}_t(\boldsymbol{x}_0,\boldsymbol{x}_1) = (\boldsymbol{x}_1 - \boldsymbol{x}_0)t + \boldsymbol{x}_0\end{equation}
那么
\begin{equation}\frac{\partial \boldsymbol{\varphi}_t(\boldsymbol{x}_0, \boldsymbol{x}_T)}{\partial t} = \boldsymbol{x}_1 - \boldsymbol{x}_0\end{equation}
所以训练目标$\eqref{eq:objective}$就是:
\begin{equation}\mathbb{E}_{\boldsymbol{x}_0\sim p_0(\boldsymbol{x}_0),\boldsymbol{x}_T\sim p_T(\boldsymbol{x}_T)}\left[\left\Vert \boldsymbol{v}_{\boldsymbol{\theta}}\big((\boldsymbol{x}_1 - \boldsymbol{x}_0)t + \boldsymbol{x}_0, t\big) - (\boldsymbol{x}_1 - \boldsymbol{x}_0)\right\Vert^2\right]\end{equation}
或者等价地写成
\begin{equation}\mathbb{E}_{\boldsymbol{x}_0,\boldsymbol{x}_t\sim p_0(\boldsymbol{x}_0)p_t(\boldsymbol{x}_t|\boldsymbol{x}_0)}\left[\left\Vert \boldsymbol{v}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t) - \frac{\boldsymbol{x}_t - \boldsymbol{x}_0}{t}\right\Vert^2\right]\end{equation}
这就完事了!结果跟《生成扩散模型漫谈(十四):构建ODE的一般步骤(中)》的“直线轨迹”例子是完全一致的,也是原论文主要研究的模型,被称为“Rectified Flow”。

从这个直线例子的过程也可以看出,通过该思路来构建扩散ODE的步骤只有寥寥几行,相比之前的过程是大大简化了,简单到甚至让人有种“颠覆了对扩散模型的印象”的不可思议之感。

证明过程 #

然而,迄今为止前面“直观结果”一节的结论只能算是一个直观的猜测,因为我们还没有从理论上证明优化目标$\eqref{eq:objective}$所得到的方程$\eqref{eq:s-ode}$的确实现了分布$p_T(\boldsymbol{x}_T)$、$p_0(\boldsymbol{x}_0)$之间的变换。

为了证明这一结论,笔者一开始是想证明目标$\eqref{eq:objective}$的最优解满足连续性方程:
\begin{equation}\frac{\partial p_t(\boldsymbol{x}_t)}{\partial t} = -\nabla_{\boldsymbol{x}_t}\cdot\big(p_t(\boldsymbol{x}_t)\boldsymbol{v}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t)\big)\end{equation}
如果满足,那么根据连续性方程与ODE的对应关系(参考《生成扩散模型漫谈(十二):“硬刚”扩散ODE》《测试函数法推导连续性方程和Fokker-Planck方程》),方程$\eqref{eq:s-ode}$确实是分布$p_T(\boldsymbol{x}_T)$、$p_0(\boldsymbol{x}_0)$之间的一个变换。

但仔细想一下,这个思路似乎有点迂回了,因为根据文章《测试函数法推导连续性方程和Fokker-Planck方程》,连续性方程本身就是由ODE通过
\begin{equation}\mathbb{E}_{\boldsymbol{x}_{t+\Delta t}}\left[\phi(\boldsymbol{x}_{t+\Delta t})\right] = \mathbb{E}_{\boldsymbol{x}_t}\left[\phi(\boldsymbol{x}_t + \boldsymbol{f}_t(\boldsymbol{x}_t)\Delta t)\right]\label{eq:base}\end{equation}
推出的,所以按理说$\eqref{eq:base}$更基本,我们只需要证明$\eqref{eq:objective}$的最优解满足它就行。也就是说,我们想要找到一个纯粹是$\boldsymbol{x}_t$的函数$\boldsymbol{f}_t(\boldsymbol{x}_t)$满足$\eqref{eq:base}$,然后发现它正好是$\eqref{eq:objective}$的最优解。

于是,我们写出(简单起见,$\boldsymbol{\varphi}_t(\boldsymbol{x}_0,\boldsymbol{x}_T)$简写为$\boldsymbol{\varphi}_t$)
\begin{equation}\begin{aligned}
\mathbb{E}_{\boldsymbol{x}_{t+\Delta t}}\left[\phi(\boldsymbol{x}_{t+\Delta t})\right] =&\, \mathbb{E}_{\boldsymbol{x}_0, \boldsymbol{x}_T}\left[\phi(\boldsymbol{\varphi}_{t+\Delta t})\right] \\
=&\, \mathbb{E}_{\boldsymbol{x}_0, \boldsymbol{x}_T}\left[\phi(\boldsymbol{\varphi}_t) + \Delta t\,\frac{\partial \boldsymbol{\varphi}_t}{\partial t}\cdot\nabla_{\boldsymbol{\varphi}_t}\phi(\boldsymbol{\varphi}_t)\right] \\
=&\, \mathbb{E}_{\boldsymbol{x}_0, \boldsymbol{x}_T}\left[\phi(\boldsymbol{x}_t)\right] + \Delta t\,\mathbb{E}_{\boldsymbol{x}_0, \boldsymbol{x}_T}\left[\frac{\partial \boldsymbol{\varphi}_t}{\partial t}\cdot\nabla_{\boldsymbol{x}_t}\phi(\boldsymbol{x}_t)\right] \\
=&\, \mathbb{E}_{\boldsymbol{x}_t}\left[\phi(\boldsymbol{x}_t)\right] + \Delta t\,\mathbb{E}_{\boldsymbol{x}_0, \boldsymbol{x}_T}\left[\frac{\partial \boldsymbol{\varphi}_t}{\partial t}\cdot\nabla_{\boldsymbol{x}_t}\phi(\boldsymbol{x}_t)\right] \\
\end{aligned}\end{equation}
其中第一个等号是因为式$\eqref{eq:track}$,第二个等号是泰勒展开到一阶,第三个等号同样是式$\eqref{eq:track}$,第四个等号就是因为$\boldsymbol{x}_t$是$\boldsymbol{x}_0,\boldsymbol{x}_T$的确定性函数,所以关于$\boldsymbol{x}_0,\boldsymbol{x}_T$的期望就是关于$\boldsymbol{x}_t$的期望。

我们看到,$\frac{\partial \boldsymbol{\varphi}_t}{\partial t}$是$\boldsymbol{x}_0,\boldsymbol{x}_T$的函数,接下来我们再做一个假设:式$\eqref{eq:track}$关于$\boldsymbol{x}_T$是可逆的。这个假设意味着我们可以从式$\eqref{eq:track}$中解出$\boldsymbol{x}_T=\boldsymbol{\psi}_t(\boldsymbol{x}_0,\boldsymbol{x}_t)$,这个结果可以代入$\frac{\partial \boldsymbol{\varphi}_t}{\partial t}$,使它变为$\boldsymbol{x}_0,\boldsymbol{x}_t$的函数。所以我们有
\begin{equation}\begin{aligned}
\mathbb{E}_{\boldsymbol{x}_{t+\Delta t}}\left[\phi(\boldsymbol{x}_{t+\Delta t})\right] =&\, \mathbb{E}_{\boldsymbol{x}_t}\left[\phi(\boldsymbol{x}_t)\right] + \Delta t\,\mathbb{E}_{\boldsymbol{x}_0, \boldsymbol{x}_T}\left[\frac{\partial \boldsymbol{\varphi}_t}{\partial t}\cdot\nabla_{\boldsymbol{x}_t}\phi(\boldsymbol{x}_t)\right] \\
=&\, \mathbb{E}_{\boldsymbol{x}_t}\left[\phi(\boldsymbol{x}_t)\right] + \Delta t\,\mathbb{E}_{\boldsymbol{x}_0, \boldsymbol{x}_t}\left[\frac{\partial \boldsymbol{\varphi}_t}{\partial t}\cdot\nabla_{\boldsymbol{x}_t}\phi(\boldsymbol{x}_t)\right] \\
=&\, \mathbb{E}_{\boldsymbol{x}_t}\left[\phi(\boldsymbol{x}_t)\right] + \Delta t\,\mathbb{E}_{\boldsymbol{x}_t}\left[\underbrace{\mathbb{E}_{\boldsymbol{x}_0|\boldsymbol{x}_t}\left[\frac{\partial \boldsymbol{\varphi}_t}{\partial t}\right]}_{\boldsymbol{x}_t\text{的函数}}\cdot\nabla_{\boldsymbol{x}_t}\phi(\boldsymbol{x}_t)\right] \\
=&\, \mathbb{E}_{\boldsymbol{x}_t}\left[\phi\left(\boldsymbol{x}_t + \Delta t\,\mathbb{E}_{\boldsymbol{x}_0|\boldsymbol{x}_t}\left[\frac{\partial \boldsymbol{\varphi}_t}{\partial t}\right]\right)\right]
\end{aligned}\end{equation}
其中第二个等号是因为$\frac{\partial \boldsymbol{\varphi}_t}{\partial t}$已经改为$\boldsymbol{x}_0,\boldsymbol{x}_t$的函数,所以第二项期望的随机变量改为$\boldsymbol{x}_0,\boldsymbol{x}_t$;第三个等号则是相当于做了分解$p(\boldsymbol{x}_0,\boldsymbol{x}_t)=p(\boldsymbol{x}_0|\boldsymbol{x}_t)p(\boldsymbol{x}_t)$,此时$\boldsymbol{x}_0,\boldsymbol{x}_t$不是独立的,所以要注明$\boldsymbol{x}_0|\boldsymbol{x}_t$,即$\boldsymbol{x}_0$是依赖于$\boldsymbol{x}_t$的。注意$\frac{\partial \boldsymbol{\varphi}_t}{\partial t}$原本是$\boldsymbol{x}_0,\boldsymbol{x}_t$的函数,现在对$\boldsymbol{x}_0$求期望后,剩下的唯一自变量就是$\boldsymbol{x}_t$,后面我们会看到它就是我们要找的纯粹是$\boldsymbol{x}_t$的函数!第四个等号,就是利用泰勒展开公式将两项重新合并起来。

现在,我们得到了
\begin{equation}\mathbb{E}_{\boldsymbol{x}_{t+\Delta t}}\left[\phi(\boldsymbol{x}_{t+\Delta t})\right] = \mathbb{E}_{\boldsymbol{x}_t}\left[\phi\left(\boldsymbol{x}_t + \Delta t\,\mathbb{E}_{\boldsymbol{x}_0|\boldsymbol{x}_t}\left[\frac{\partial \boldsymbol{\varphi}_t}{\partial t}\right]\right)\right]\end{equation}
对于任意测试函数$\phi$成立,所以这意味着
\begin{equation}\boldsymbol{x}_{t+\Delta t} = \boldsymbol{x}_t + \Delta t\,\mathbb{E}_{\boldsymbol{x}_0|\boldsymbol{x}_t}\left[\frac{\partial \boldsymbol{\varphi}_t}{\partial t}\right]\quad\Rightarrow\quad\frac{d\boldsymbol{x}_t}{dt} = \mathbb{E}_{\boldsymbol{x}_0|\boldsymbol{x}_t}\left[\frac{\partial \boldsymbol{\varphi}_t}{\partial t}\right]\label{eq:real-ode}\end{equation}
就是我们要寻找的ODE。根据
\begin{equation}\mathbb{E}_{\boldsymbol{x}}[\boldsymbol{x}] = \mathop{\text{argmin}}_{\boldsymbol{\mu}}\mathbb{E}_{\boldsymbol{x}}\left[\Vert \boldsymbol{x} - \boldsymbol{\mu}\Vert^2\right]\label{eq:mean-opt}\end{equation}
式$\eqref{eq:real-ode}$的右端正好是训练目标$\eqref{eq:objective}$的最优解,这就证明了优化训练目标$\eqref{eq:objective}$得出的方程$\eqref{eq:s-ode}$的确实现了分布$p_T(\boldsymbol{x}_T)$、$p_0(\boldsymbol{x}_0)$之间的变换。

读后感受 #

关于“直观结果”中的构建扩散ODE的思路,原论文的作者还写了篇知乎专栏文章《[ICLR2023] 扩散生成模型新方法:极度简化,一步生成》,大家也可以去读读。读者也是在这篇专栏中首次了解到该方法的,并深深为之震惊和叹服。

如果读者读过《生成扩散模型漫谈(十四):构建ODE的一般步骤(中)》,那么就会更加体会到该思路的简单直接,也更能理解笔者为何如此不吝赞美之词。不怕大家笑话,笔者在写“中篇”(当时的“下篇”)的时候,是考虑过式$\eqref{eq:track}$所描述的轨迹的,但是在当时的框架下,根本没法推演下去,最后以失败告终,当时完全想不到它能以一种如此简捷的方式进行下去。所以,写这个扩散ODE系列真的让人有种“人比人,气死人”的感觉,“中篇”、“下篇”就是自己智商被一次次“降维打击”的最好见证。

读者可能想问,还会不会有更简单的第四篇,让笔者再一次经历降维打击?可能有,但概率真的很小了,真的很难想象会有比这更简单的构建步骤了。“直观结果”一节看上去很长,但实际步骤就只有两步:1、随便选择一个渐变轨迹;2、用$\boldsymbol{x}_t$的函数去逼近渐变轨迹对$t$的导数。就这样的寥寥两步,还能怎么再简化呢?甚至说,“证明过程”一节的推导也是相当简单的了,虽然写得长,但本质就是求个导,然后变换一下求期望的分布,比前两篇的过程简单了可不止一丁半点。总而言之,亲自完成过ODE扩散的前两篇推导的读者就能深刻感觉到,这一篇的思路是真的简单,简单到让我们觉得已经无法再简单了。

此外,除了提供构建扩散ODE的简单思路外,原论文还讨论了Rectified Flow跟最优传输之间的联系,以及如何用这种联系来加速采样过程,等等。但这部分内容并不是本文主要关心的,所以等以后有机会我们再讨论它们。

文章小结 #

本文介绍了Rectified Flow一文中提出的构建ODE式扩散模型的一种极其简单直观的思路,并给出了自己的证明过程。

转载到请包括本文地址:https://kexue.fm/archives/9497

更详细的转载事宜请参考:《科学空间FAQ》

如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。

如果您觉得本文还不错,欢迎分享/打赏本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!

如果您需要引用本文,请参考:

苏剑林. (Feb. 23, 2023). 《生成扩散模型漫谈(十七):构建ODE的一般步骤(下) 》[Blog post]. Retrieved from https://kexue.fm/archives/9497

@online{kexuefm-9497,
        title={生成扩散模型漫谈(十七):构建ODE的一般步骤(下)},
        author={苏剑林},
        year={2023},
        month={Feb},
        url={\url{https://kexue.fm/archives/9497}},
}