6 Jan

借助变分法变换坐标

ODE的坐标变换

熟悉理论力学的读者应该能够领略到变分法在变换坐标系中的作用。比如,如果要将下面的平面二体问题方程
$$\left\{\begin{aligned}\frac{d^2 x}{dt^t}=\frac{-\mu x}{(x^2+y^2)^{3/2}}\\
\frac{d^2 y}{dt^t}=\frac{-\mu y}{(x^2+y^2)^{3/2}}\end{aligned}\right.\tag{1}$$
变换到极坐标系下,如果直接代入计算,将会是一道十分繁琐的计算题。但是,我们知道,上述方程只不过是作用量
$$S=\int \left[\frac{1}{2}\left(\dot{x}^2+\dot{y}^2\right)+\frac{\mu}{\sqrt{x^2+y^2}}\right]dt\tag{2}$$
变分之后的拉格朗日方程,那么我们就可以直接对作用量进行坐标变换。而由于作用量一般只涉及到了一阶导数,因此作用量的变换一般来说比较简单。比如,很容易写出,$(2)$在极坐标下的形式为
$$S=\int \left[\frac{1}{2}\left(\dot{r}^2+r^2\dot{\theta}^2\right)+\frac{\mu}{r}\right]dt\tag{3}$$
对$(3)$进行变分,得到的拉格朗日方程为
$$\left\{\begin{aligned}&\ddot{r}=r\dot{\theta}^2-\frac{\mu}{r^2}\\
&\frac{d}{dt}\left(r^2\dot{\theta}\right)=0\end{aligned}\right.\tag{4}$$
就这样完成了坐标系的变换。如果想直接代入$(1)$暴力计算,那么请参考《方程与宇宙》:二体问题的来来去去(一)

点击阅读全文...

15 Dec

两生物种群竞争模型:LaTeX+Python

写在前面:本文是笔者数学建模课的作业,探讨了两生物种群竞争的常微分方程组模型的解的性质,展示了微分方程定性理论的基本思想。当然,本文最重要的目的,是展示LaTeX与Python的完美结合。(本文的图均由Python的Matplotlib模块生成;而文档则采用LaTeX编辑。)

问题提出

研究在同一个自然环境中生存的两个种群之间的竞争关系。假设两个种群独自在这个自然环境中生存时数量演变都服从Logistic规律,又假设当它们相互竞争时都会减慢对方数量的增长,增长速度的减小都与它们数量的乘积成正比。按照这样的假设建立的常微分方程模型为
$$\begin{equation}\label{eq:jingzhengfangcheng}\left\{\begin{aligned}\frac{dx_1}{dt}=r_1 x_1\left(1-\frac{x_1}{N_1}\right)-a_1 x_1 x_2 \\
\frac{dx_2}{dt}=r_2 x_2\left(1-\frac{x_2}{N_2}\right)-a_2 x_1 x_2\end{aligned}\right.\end{equation}$$
本文分别通过定量和定性两个角度来分析该方程的性质。

点击阅读全文...

24 Nov

力的无穷分解与格林函数法

我小时候一直有个疑问:

直升机上的螺旋桨能不能用来挡雨?

一般的螺旋桨是若干个“条状”物通过旋转对称而形成的,也就是说,它并非一个面,按常理来说,它是没办法用来挡雨的。但是,如果在高速旋转的情况下,甚至假设旋转速度可以任意大,那么我们任意时刻都没有办法穿过它了,这种情况下,它似乎与一个实在的面无异?

力的无穷分解

力的离散化

力的离散化

当然,以上只是笔者小时候的一个“异想天开”的念头,读者不必较真。不过,这个疑问跟本文有什么联系呢?我们在研究振动问题之时,通常会遇到在变力的作用下的受迫振动问题,已知变力是时间的函数,比如$f(t)$,然而,虽然知道$f(t)$的具体形式,但是由于$f$的非线性性,加上外力之后的运动,不一定容易求解。然而,如果可以将一个变化的力分段为无数个无穷小时间内的恒力(冲力),那么我们就可以分段讨论我们要研究的运动,而通常来说,恒力的问题会比变力容易。将一个变力离散化,然后再取极限,那么是不是跟原来在变力下的运动是一样的呢?这跟文章开头的疑问有着类似的思想——离线的极限,跟连续本身,是不是等价的?

而让人惊喜的是,在通常的物理系统中,将力分段为无数个小区间内的恒力的做法,能够导致正确的答案,而且,这恰好是线性常微分方程的格林函数法。下面我们来分析这一做法。

点击阅读全文...

18 Jun

线性微分方程组:已知特解求通解

含有$n$个一阶常微分方程的一阶常微分方程组
$$\dot{\boldsymbol{x}}=\boldsymbol{A}\boldsymbol{x}$$
其中$\boldsymbol{x}=(x_1(t),\dots,x_n(t))^{T}$为待求函数,而$\boldsymbol{A}=(a_{ij}(t))_{n\times n}$为已知的函数矩阵。现在已知该方程组的$n-1$个线性无关的特解$\boldsymbol{x}_1,\boldsymbol{x}_2,\dots,\boldsymbol{x}_{n-1}$(解的列向量),求方程的通解。

这是我的一位同学在6月5号问我的一道题目,我当时看了一下,感觉可以通过李对称的方法很容易把解构造出来,当晚就简单分析了一下,发现根据李对称的思想,由上面已知的信息确实足以把通解构造出来。但是我尝试了好几天,尝试了几何、代数等思想,都没有很好地构造出相应的正则变量出来,从而也没有写出它的显式解,于是就搁置下来了。今天再分析这道题目时,竟在无意之间构造出了让我比较满意的解来~

点击阅读全文...

26 Nov

求解微分方程的李对称方法(二)

由于重装系统时的粗心大意,笔者把《求解微分方程的李对称方法》的Word文档弄丢了,更不幸的是存有该文档的U盘也弄丢了~没办法,只好重新把这篇文章录入了。幸好之前曾把它打印成纸质版,还有旧稿可以参考。现发布《求解微分方程的李对称方法(二)》,希望能够为对李对称方法有兴趣的朋友提供些许资源。

相比(一),(二)将所有内容重新用CTex录入了,果然,$\LaTeX$才是写数学论文软件中的佼佼者,虽然是纯代码编辑,但是这正符合我追求简洁清晰的风格。在内容上,(二)增加了一阶常微分方程组的内容,并对(一)的部分细节做了修改,本文完成后就初步相对完整地叙述了一阶常微分方程组的李对称积分的思路,内容增加到了13页。而在接下来的(三)中,将会提供李代数的内容;如果有(四)的话,就会谈到李对称方法的计算机实现。希望大家会喜欢这系列文章。更期待大家的读后感(包括挑错)^_^

点击阅读全文...

29 Oct

求解微分方程的李对称方法(一)

马里乌斯·索菲斯·李

马里乌斯·索菲斯·李

在这篇日志发表之前,科学空间在整个十月就只是在国庆期间发了一篇小感想,这是比较少见的。一个小原因是这学期社团(广播台)方面的活动有点多,当然这不是主要的,其实这个月我大多数课余时间放到了两件事情上:一是无线电路的入门,二就是本文所要讲的《求解微分方程的李对称方法》

李对称方法主要是通过发现微分方程的对称性来求解微分方程。我首次接触到这个方法是在一本叫《微分方程与数学物理问题》的书上边,书中写得很清晰易懂,后来我还买了类似的《微分方程的对称与积分方法》,后者相对抽象一些,讨论也深入一些。在我目前发现的中文书籍中,这是唯一的两本以李对称方法求解微分方程为主题的书。这两本书还有一个共同特点,就是它们都是外国教材的翻译版。

点击阅读全文...

27 Sep

数学基本技艺之23、24(下)

在上一篇文章中我们得到了第23题的解,本来想接着类似地求第24题,但是看着23题的答案,又好像发现了一些新的东西,故没有继续写下去。等到今天在课堂上花了一节课研究了一下之后,得到了关于这种拟齐次微分方程的一些新的结果,遂另开一篇新文章,与大家分享。

一、特殊拟齐次微分方程的通解

在上一篇文章中,我们求出了拟齐次微分方程$\frac{dy}{dx}=x+\frac{x^3}{y}$的解:
$$(2y+x^2)(x^2-y)^2=C$$
或者写成这样的形式:
$$(y+\frac{1}{2} x^2)(y-x^2)^2=C$$

点击阅读全文...

26 Sep

数学基本技艺之23、24(上)

23、求解拟齐次方程$\frac{dy}{dx}=x+\frac{x^3}{y}$
24、求解拟齐次方程$\ddot{x}=x^5+x^2\dot{x}$

把这两道题目放在一起说是因为我觉得这两道题目本质上是一样的,当然,不管怎样,24题更复杂一些。在24题中,设$\dot{x}=y$,则$\ddot{x}=y\frac{dy}{dx}$,于是原方程就变成:
$$\frac{dy}{dx}=x^2+\frac{x^5}{y}$$
这样就跟23题的形式差不多了。

点击阅读全文...