26 Jul

问世间质心(重心)知多少

均匀大圆挖去小圆后,求质心(重心)

均匀大圆挖去小圆后,求质心(重心)

不论在数学题目上,或者是物理应用中,我们总能够看到类似的题目:求一个规则物体挖去(或增加)一个规则物体后,其剩下部分的质心(重心)。

点击阅读全文...

25 Jul

已知中心五边形,作五边形

这一次又是数联天地论坛上的问题,这个数学论坛做的挺好的。^_^

已知五个定点A、B、C、D、E,求作五边形FGHIJ,使每一边的中点分别为5定点。

五边形问题

五边形问题

点击阅读全文...

24 Jul

神秘的圆——三角形的“六接圆”(添加新方法)

数联天地论坛中的watt5151朋友提出了这样的一个问题:

三角形的“六接圆”

三角形的“六接圆”

如图,已知三角形ABC,如何做一个圆,它与三角形三边都相交,而且六个交点可以连成三条直径?

点击阅读全文...

18 Jul

《向量》系列——2.曲率半径

圆周是如此地和谐与完美,致使数学家和物理学家对它钟爱有加。几何上可以把一条曲线的局部看做一个圆弧,利用圆的性质去研究它(在数学上,曲率半径的倒数就是曲率,曲率越大,曲线越弯曲);物理学家喜欢把一个质点的曲线运动轨迹的局部看做圆周运动,利用圆周运动的方法来描述这种运动。这两种研究方法都告诉了我们,两种不同的“线”在极小的范围内可以等效的,这也为我们对科学进行探究提供了一点指导思想:把未知变已知,以已知看未知。物理学和数学的两种处理方法中,有一点是殊途同归的:那就是看轨迹看成一个圆后,圆的半径是多少?我们首先得求出它。

在数学分析上可以利用微积分的相关知识来推导曲率半径公式,而BoJone则更偏爱物理方法,通过物理和向量知识的结合,推导出曲率半径公式,让BoJone感到“别有一番风味”。

点击阅读全文...

27 Jun

威力巨大的“有向线段”

向量

向量

向量,又称矢量,定义为线性空间中需要大小和方向才能完整表示的一个量。而对于我们来说,还是使用最简单的概念比较合适:向量就是“有向线段”。向量这一概念,来源于物理,而又不仅仅应用于物理。向量的出现,使得几何学和物理学的发展又多了一个强有力的工具,记得有一句这样的话:“对数的出现,延长了天文学家的寿命。”而我可以毫不夸张地说,向量的发展,也在不断地延长着数学家和物理学家的寿命!

点击阅读全文...

29 May

数学魔术——漂亮的近似

$$e\approx\Big(1+3^{-2^{85}}\Big)^{9^{4^{6\times 7}}}$$

这个e的近似表达很漂亮,它恰好用到了1到9这9个数字。而且漂亮的不仅仅是这一点,大家猜猜看它的有效数字是多少位?10 位?100 位?1000 位?10000 位?

点击阅读全文...

2 May

解答不等式的误区...

前几天做到了一道不等式题目,求2a-b的值域。其中
$$1 < a + b < 2\tag{1}$$$$-2 < a - b < -1\tag{2}$$
老师很高兴地把两式左右两边加起来,得到$-1<2a<1$;然后把第二式乘以(-1),得到$1 < b - a < 2$,然后再与(1)相加,得到$2 < 2 b< 4 \Rightarrow 1 < b < 2$;接着把这式子乘上(-1),然后与$-1<2a<1$相加。于是结果很显然,$-3<2a-b<0$。读者们,你们觉得这做法有问题吗?

点击阅读全文...

4 Apr

数值方法解方程之终极算法

呵呵,做了一回标题党,可能说得夸张了一点。说是“终极算法”,主要是因为它可以任意提高精度、而且几乎可以应付任何非线性方程(至少理论上是这样),提高精度是已知的迭代式上添加一些项,而不是完全改变迭代式的形式,当然在提高精度的同时,计算量也会随之增大。其理论基础依旧是泰勒级数。

我们考虑方程$x=f(y)$,已知y求x是很容易的,但是已知x求y并不容易。我们考虑把y在$(x_0,y_0)$处展开成x的的泰勒级数。关键是求出y的n阶导数$\frac{d^n y}{dx^n}$。我们记$f^{(n)}(y)=\frac{d^n x}{dy^n}$,并且有
$$\frac{dy}{dx}=\frac{1}{(\frac{dx}{dy})}=f'(y)^{-1}$$

点击阅读全文...