生成扩散模型漫谈(九):条件控制生成结果
By 苏剑林 | 2022-08-30 | 143904位读者 | 引用前面的几篇文章都是比较偏理论的结果,这篇文章我们来讨论一个比较有实用价值的主题——条件控制生成。
作为生成模型,扩散模型跟VAE、GAN、flow等模型的发展史很相似,都是先出来了无条件生成,然后有条件生成就紧接而来。无条件生成往往是为了探索效果上限,而有条件生成则更多是应用层面的内容,因为它可以实现根据我们的意愿来控制输出结果。从DDPM至今,已经出来了很多条件扩散模型的工作,甚至可以说真正带火了扩散模型的就是条件扩散模型,比如脍炙人口的文生图模型DALL·E 2、Imagen。
在这篇文章中,我们对条件扩散模型的理论基础做个简单的学习和总结。
技术分析
从方法上来看,条件控制生成的方式分两种:事后修改(Classifier-Guidance)和事前训练(Classifier-Free)。
生成扩散模型漫谈(十):统一扩散模型(理论篇)
By 苏剑林 | 2022-09-14 | 74052位读者 | 引用老读者也许会发现,相比之前的更新频率,这篇文章可谓是“姗姗来迟”,因为这篇文章“想得太多”了。
通过前面九篇文章,我们已经对生成扩散模型做了一个相对全面的介绍。虽然理论内容很多,但我们可以发现,前面介绍的扩散模型处理的都是连续型对象,并且都是基于正态噪声来构建前向过程。而“想得太多”的本文,则希望能够构建一个能突破以上限制的扩散模型统一框架(Unified Diffusion Model,UDM):
1、不限对象类型(可以是连续型$\boldsymbol{x}$,也可以是离散型的$\boldsymbol{x}$);
2、不限前向过程(可以用加噪、模糊、遮掩、删减等各种变换构建前向过程);
3、不限时间类型(可以是离散型的$t$,也可以是连续型的$t$);
4、包含已有结果(可以推出前面的DDPM、DDIM、SDE、ODE等结果)。
这是不是太过“异想天开”了?有没有那么理想的框架?本文就来尝试一下。
CoSENT(三):作为交互式相似度的损失函数
By 苏剑林 | 2022-11-09 | 32888位读者 | 引用在《CoSENT(一):比Sentence-BERT更有效的句向量方案》中,笔者提出了名为“CoSENT”的有监督句向量方案,由于它是直接训练cos相似度的,跟评测目标更相关,因此通常能有着比Sentence-BERT更好的效果以及更快的收敛速度。在《CoSENT(二):特征式匹配与交互式匹配有多大差距?》中我们还比较过它跟交互式相似度模型的差异,显示它在某些任务上的效果还能直逼交互式相似度模型。
然而,当时笔者是一心想找一个更接近评测目标的Sentence-BERT替代品,所以结果都是面向有监督句向量的,即特征式相似度模型。最近笔者突然反应过来,CoSENT其实也能作为交互式相似度模型的损失函数。那么它跟标准选择交叉熵相比孰优孰劣呢?本文来补充这部分实验。
缓解交叉熵过度自信的一个简明方案
By 苏剑林 | 2023-03-14 | 33584位读者 | 引用众所周知,分类问题的常规评估指标是正确率,而标准的损失函数则是交叉熵,交叉熵有着收敛快的优点,但它并非是正确率的光滑近似,这就带来了训练和预测的不一致性问题。另一方面,当训练样本的预测概率很低时,交叉熵会给出一个非常巨大的损失(趋于$-\log 0^{+}=\infty$),这意味着交叉熵会特别关注预测概率低的样本——哪怕这个样本可能是“脏数据”。所以,交叉熵训练出来的模型往往有过度自信现象,即每个样本都给出较高的预测概率,这会带来两个副作用:一是对脏数据的过度拟合带来的效果下降,二是预测的概率值无法作为不确定性的良好指标。
围绕交叉熵的改进,学术界一直都有持续输出,目前这方面的研究仍处于“八仙过海,各显神通”的状态,没有标准答案。在这篇文章中,我们来学习一下论文《Tailoring Language Generation Models under Total Variation Distance》给出的该问题的又一种简明的候选方案。
生成扩散模型漫谈(十六):W距离 ≤ 得分匹配
By 苏剑林 | 2023-02-14 | 24405位读者 | 引用Wasserstein距离(下面简称“W距离”),是基于最优传输思想来度量两个概率分布差异程度的距离函数,笔者之前在《从Wasserstein距离、对偶理论到WGAN》等博文中也做过介绍。对于很多读者来说,第一次听说W距离,是因为2017年出世的WGAN,它开创了从最优传输视角来理解GAN的新分支,也提高了最优传输理论在机器学习中的地位。很长一段时间以来,GAN都是生成模型领域的“主力军”,直到最近这两年扩散模型异军突起,GAN的风头才有所下降,但其本身仍不失为一个强大的生成模型。
从形式上来看,扩散模型和GAN差异很明显,所以其研究一直都相对独立。不过,去年底的一篇论文《Score-based Generative Modeling Secretly Minimizes the Wasserstein Distance》打破了这个隔阂:它证明了扩散模型的得分匹配损失可以写成W距离的上界形式。这意味着在某种程度上,最小化扩散模型的损失函数,实则跟WGAN一样,都是在最小化两个分布的W距离。
关于NBCE方法的一些补充说明和分析
By 苏剑林 | 2023-05-31 | 26780位读者 | 引用上周在《NBCE:使用朴素贝叶斯扩展LLM的Context处理长度》中,我们介绍了一种基于朴素贝叶斯来扩展LLM的Context长度的方案NBCE(Naive Bayes-based Context Extension)。由于它有着即插即用、模型无关、不用微调等优点,也获得了一些读者的认可,总的来说目前大家反馈的测试效果还算可以。
当然,部分读者在使用的时候也提出了一些问题。本文就结合读者的疑问和笔者的后续思考,对NBCE方法做一些补充说明和分析。
方法回顾
假设$T$为要生成的token序列,$S_1,S_2,\cdots,S_n$是给定的若干个Context,我们需要根据$S_1,S_2,\cdots,S_n$生成$T$,那么就需要估计$p(T|S_1, S_2,\cdots,S_n)$。根据朴素贝叶斯思想,我们得到
\begin{equation}\log p(T|S_1, S_2,\cdots,S_n) = \color{red}{(\beta + 1)\overline{\log p(T|S)}} - \color{green}{\beta\log p(T)} + \color{skyblue}{\text{常数}}\label{eq:nbce-2}\end{equation}
生成扩散模型漫谈(十八):得分匹配 = 条件得分匹配
By 苏剑林 | 2023-02-28 | 30555位读者 | 引用在前面的介绍中,我们多次提及“得分匹配”和“条件得分匹配”,它们是扩散模型、能量模型等经常出现的概念,特别是很多文章直接说扩散模型的训练目标是“得分匹配”,但事实上当前主流的扩散模型如DDPM的训练目标是“条件得分匹配”才对。
那么“得分匹配”与“条件得分匹配”具体是什么关系呢?它们两者是否等价呢?本文详细讨论这个问题。
得分匹配
首先,得分匹配(Score Matching)是指训练目标:
\begin{equation}\mathbb{E}_{\boldsymbol{x}_t\sim p_t(\boldsymbol{x}_t)}\left[\left\Vert\nabla_{\boldsymbol{x}_t}\log p_t(\boldsymbol{x}_t) - \boldsymbol{s}_{\boldsymbol{\theta}}(\boldsymbol{x}_t,t)\right\Vert^2\right]\label{eq:sm}\end{equation}
其中$\boldsymbol{\theta}$是训练参数。很明显,得分匹配是想学习一个模型$\boldsymbol{s}_{\boldsymbol{\theta}}(\boldsymbol{x}_t,t)$来逼近$\nabla_{\boldsymbol{x}_t}\log p_t(\boldsymbol{x}_t)$,这里的$\nabla_{\boldsymbol{x}_t}\log p_t(\boldsymbol{x}_t)$我们就称为“得分”。
生成扩散模型漫谈(十九):作为扩散ODE的GAN
By 苏剑林 | 2023-06-24 | 33038位读者 | 引用在文章《生成扩散模型漫谈(十六):W距离 ≤ 得分匹配》中,我们推导了Wasserstein距离与扩散模型得分匹配损失之间的一个不等式,表明扩散模型的优化目标与WGAN的优化目标在某种程度上具有相似性。而在本文,我们将探讨《MonoFlow: Rethinking Divergence GANs via the Perspective of Wasserstein Gradient Flows》中的研究成果,它进一步展示了GAN与扩散模型之间的联系:GAN实际上可以被视为在另一个时间维度上的扩散ODE!
这些发现表明,尽管GAN和扩散模型表面上是两种截然不同的生成式模型,但它们实际上存在许多相似之处,并在许多方面可以相互借鉴和参考。
思路简介
我们知道,GAN所训练的生成器是从噪声$\boldsymbol{z}$到真实样本的一个直接的确定性变换$\boldsymbol{g}_{\boldsymbol{\theta}}(\boldsymbol{z})$,而扩散模型的显著特点是“渐进式生成”,它的生成过程对应于从一系列渐变的分布$p_0(\boldsymbol{x}_0),p_1(\boldsymbol{x}_1),\cdots,p_T(\boldsymbol{x}_T)$中采样(注:在前面十几篇文章中,$\boldsymbol{x}_T$是噪声,$\boldsymbol{x}_0$是目标样本,采样过程是$\boldsymbol{x}_T\to \boldsymbol{x}_0$,但为了便于下面的表述,这里反过来改为$\boldsymbol{x}_0\to \boldsymbol{x}_T$)。看上去确实找不到多少相同之处,那怎么才能将两者联系起来呢?
最近评论