NBCE:使用朴素贝叶斯扩展LLM的Context处理长度
By 苏剑林 | 2023-05-23 | 83793位读者 |在LLM时代还玩朴素贝叶斯(Naive Bayes)?
这可能是许多读者在看到标题后的首个想法。确实如此,当古老的朴素贝叶斯与前沿的LLM相遇时,产生了令人惊讶的效果——我们可以直接扩展现有LLM模型的Context处理长度,无需对模型进行微调,也不依赖于模型架构,具有线性效率,而且效果看起来还不错——这就是本文所提出的NBCE(Naive Bayes-based Context Extension)方法。
摸石过河 #
假设$T$为要生成的token序列,$S_1,S_2,\cdots,S_n$是给定的若干个相对独立的Context集合(比如$n$个不同的段落,至少不是一个句子被分割为两个片段那种),假设它们的总长度已经超过了训练长度,而单个$S_k$加$T$还在训练长度内。我们需要根据$S_1,S_2,\cdots,S_n$生成$T$,即估计$p(T|S_1, S_2,\cdots,S_n)$。
简单来说,朴素贝叶斯就是“贝叶斯公式+独立假设”。根据贝叶斯公式:
\begin{equation}p(T|S_1, S_2,\cdots,S_n) \propto p(S_1, S_2,\cdots,S_n|T)p(T)\end{equation}
这里的$\propto$,是省去了与$T$无关的常数因子。根据(条件)独立假设:
\begin{equation}p(S_1, S_2,\cdots,S_n|T) = \prod_{k=1}^n p(S_k|T)\end{equation}
所以有
\begin{equation}p(T|S_1, S_2,\cdots,S_n) \propto p(T)\prod_{k=1}^n p(S_k|T)\end{equation}
再次根据贝叶斯公式$p(S_k|T) \propto \frac{p(T|S_k)}{p(T)}$,得到
\begin{equation}p(T|S_1, S_2,\cdots,S_n) \propto \frac{1}{p^{n-1}(T)}\prod_{k=1}^n p(T|S_k)\end{equation}
或者
\begin{equation}\log p(T|S_1, S_2,\cdots,S_n) = \color{red}{\sum_{k=1}^n \log p(T|S_k)} - \color{green}{(n-1)\log p(T)} + \color{skyblue}{\text{常数}}\label{eq:nbce-1}\end{equation}
这里的$\color{red}{p(T|S_k)}$和$\color{green}{p(T)}$都可以直接用现有的LLM进行计算,而且只要是语言模型都行,跟架构无关,也不需要用长文本微调。其中,$\color{red}{p(T|S_k)}$是单个Context所预测的概率,$\color{green}{p(T)}$则无Context(或者Context为空)的概率,并且多个Context可以放在同一个batch中并行计算,计算量随着Context数的增加是线性增长的。
抽丝剥茧 #
当然,朴素贝叶斯依赖于独立假设,这会限制它的实际效果。为了“青出于蓝而胜于蓝”,我们不妨将式$\eqref{eq:nbce-1}$进一步“抽丝剥茧”、“去芜存菁”,以达到更好的效果。
首先我们记$\log p(T|S) = [\log p(T|S_1),\cdots,\log p(T|S_n)]$,以及
\begin{equation}\overline{\log p(T|S)} = \frac{1}{n}\sum_{k=1}^n \log p(T|S_k)\end{equation}
并设$\beta = n - 1$,那么式$\eqref{eq:nbce-1}$可以重写为
\begin{equation}\log p(T|S_1, S_2,\cdots,S_n) = \color{red}{(\beta + 1)\overline{\log p(T|S)}} - \color{green}{\beta\log p(T)} + \color{skyblue}{\text{常数}}\label{eq:nbce-2}\end{equation}
重写为上述形式后,自然而言地引出了两个问题:
1、如果将$\beta$作为超参数来调,是否可能取得更好的效果?
2、$\overline{\log p(T|S)}$就是$\log p(T|S)$的Average Pooling,那么换成其他Pooling方法(简记为$\mathcal{P}$)是否有更好的效果?即
\begin{equation}\log p(T|S_1, S_2,\cdots,S_n) = \color{red}{(\beta + 1)\mathcal{P}[\log p(T|S)]} - \color{green}{\beta\log p(T)} + \color{skyblue}{\text{常数}}\label{eq:nbce-3}\end{equation}
于是笔者在7B模型上围绕这两个问题进行调试,得到的初步结论是:在阅读理解场景中Max Pooling配合$\beta=0.25$,用Greedy Search总体表现比较好,然而Random Sample出来的结果基本不可读。
最终方案 #
为什么会出现Greedy Search好而Random Sample差的情况呢?我们知道,Random Sample是“按照分布采样”,它的效果差说明Max Pooling的结果不是一个合理的分布;而Greedy Search只关心最大概率者,而不关心分布的合理性,它的效果好告诉我们概率最大的token正确性较高。
概率越大说明不确定性越低,所以为了改善Random Sample的效果,我们将Pooling方式改为直接输出不确定性最低的那个分布:
\begin{equation}\begin{aligned}
&\mathcal{P}[\log p(T|S)] = \log p(T|S_{\color{red}{k}}) \\[5pt]
&\color{red}{k} = \mathop{\text{argmin}} \big\{H_1,H_2,\cdots,H_n\big\} \\[5pt]
&H_i = -\sum_T p(T|S_i)\log p(T|S_i)
\end{aligned}\end{equation}
代入到式$\eqref{eq:nbce-3}$,就是最终的NBCE(Naive Bayes-based Context Extension)。
值得指出的是,虽然我们的出发点是朴素贝叶斯,但一般化后的式$\eqref{eq:nbce-3}$已经超出了常规的朴素贝叶斯的范畴,同时保留了朴素贝叶斯的可解释性。不难看出,式$\eqref{eq:nbce-3}$的形式很是直观:
1、不同Context的预测结果通过方法$\mathcal{P}$聚合(或者说投票)在一起(权重为$\beta+1$),并减去无Context的预测结果(权重为$\beta$);
2、之所以要减去无Context预测结果,是为了让模型更加倾向于结合Context而不是纯粹根据自身知识储备来回答(注:3天后出现在Arxiv的论文《Trusting Your Evidence: Hallucinate Less with Context-aware Decoding》也提出了相同的技巧用来减少幻觉);
3、不同场景可以选择不同的$\beta$,比如需要结合Context做阅读理解的,可以考虑较大的$\beta$,如果偏向于自由创作,则选择较小的$\beta$,笔者认为$\beta\geq -1$都是合理的。
参考实现 #
下面给出NBCE的参考实现:
Github: https://github.com/bojone/NBCE
从演示代码可以看出,NBCE的实现很简单,只需要修改一下解码函数中的logits构建方式,跟解码算法的选择并不冲突。
所给的Demo包含12段不同的Context,总长度为9000多字,连同8个问题一次性输入到模型中(模型训练长度为2048,参数量为7B,可以在OpenBuddy下载),模型能够逐一根据所给Context正确回答这8个问题。值得指出的是,所有的Context、问题和答案加起来,超过了1万字!另外,有朋友简单尝试了简历匹配和作文打分应用,效果也尚可,非常建议大家亲自调试一下。
相关工作 #
扩展LLM的Context长度其实已有不少,但多数是通过结合检索或者摘要的方式来缩短样本的长Context,如Unlimiformer。由于不是直接处理长Context,因此通常无法做精细的阅读理解,而且这些方案往往需要在训练阶段就考虑进去,而不是事后即插即用到已有的LLM模型中。
在NBCE之前,能够不微调地扩展Context长度的方案是Parallel Context Window(下面简称PCW),出自论文《Parallel Context Windows for Large Language Models》和《Structured Prompting: Scaling In-Context Learning to 1,000 Examples》,两篇论文是同一时期不同作者的工作,但所提的方法只有细微的差别,因此这里都将它们叫做PCW。
PCW适用于Self Attention模型,主要修改包括Position Encoding和Attention Mask,如下图所示:
首先确定Context的最大长度$L$(图中为6),然后每个Context的最后一个位置编码为$L-1$,倒数第二个位置编码为$L-2$,...,依此类推,这种编码方式我们称为“右对齐”(或者“左缩进”);另一边,对于Task Tokens部分(Prompt+生成内容),我们的位置编码是$L,L+1,L+2,\cdots$。每个Context单独编码,所以对应的Attention Mask是分块对角矩阵,而因为是LM,所以是分块对角下三角阵;至于Task Tokens部分需要结合所有的Context,所以它需要Attention到所有Context(以及它自身)。这样一来,如果将每个Context单独拿出来,和Task Tokens拼在一起,其Attention模式就跟原本的LM一致了。
或许有读者看出,其实NBCE跟PCW有着很相似的特性,比如对于Context都是无序的、平权的。事实上,如果将NBCE应用到单层单头注意力模型中,那么结果大致上就是PCW。为了显示这一点,我们写出单层单头注意力的语言模型为
\begin{equation}p(x_t|x_{< t}) = softmax\left(\sum_{i=1}^t a_{t,i}v_i W\right)\end{equation}
所以大致上有$\log p(x_t|x_{< t}) \sim \sum\limits_{i=1}^t a_{t,i}v_i W$,接着代入到式$\eqref{eq:nbce-2}$并取$\beta=0$,得到
\begin{equation}\log p(T|S_1, S_2,\cdots,S_n) \sim \frac{1}{n}\sum_{k=1}^n\left(\sum_{i\in S_k} a_{T,i}v_i\right) W = \left(\sum_{i\in S_1\oplus\cdots\oplus S_n} \frac{a_{T,i}}{n}v_i\right) W \end{equation}
这里假设的是$T$是单个token,但其实已经不失一般性了,$\oplus$是拼接的意思。在上式中,$S_k\oplus T$是作为一个连续片段来推理的(NBCE的设定),所以它们的位置编码相邻,而$a_{T,i}/n$构成了$T$与所有$S_i$的一个整体Attention(求和同样是1),这些特性跟PCW其实是一致的,PCW只不过是以Attention Mask的方式更优雅地整合到每一层中。
因此,PCW大致上就是Average Pooling版的NBCE,我们实测也发现它跟Average Pooling版的NBCE有着相似的缺点——当Context数据增加时,输出的结果开始不够准确,具体表现为主题相关,但是作为问题的答案来说是错误的。
延伸思考 #
NBCE的一大缺点是无序性,即无法识别Context的输入顺序,这在续写故事等场景可能表现欠佳。为了缓解这一点,可以考虑在每一个Context前面加个能指示序信息的prefix,就好比小说中的“第一章”、“第二章”那样。
总的来说,目前笔者关于NBCE的测试都限于“阅读理解”场景,即“理解”长文本,能否用此方法来“生成”长文本,还是个未知数,期待大家的测试结果。
此外,还有一个有意思的问题是:
既然朴素贝叶斯都能在LLM领域能派上用场,那么其他传统概率模型(比如HMM)是否也能在LLM领域有它们的一席之地呢?
文章小结 #
本文提出了NBCE(Naive Bayes-based Context Extension),它基于朴素贝叶斯思想来扩展LLM的Context处理长度,有着即插即用、模型无关、无须微调、线性效率、实现简单等优点,并且看上去效果还不错,欢迎大家测试。
转载到请包括本文地址:https://kexue.fm/archives/9617
更详细的转载事宜请参考:《科学空间FAQ》
如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。
如果您觉得本文还不错,欢迎分享/打赏本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!
如果您需要引用本文,请参考:
苏剑林. (May. 23, 2023). 《NBCE:使用朴素贝叶斯扩展LLM的Context处理长度 》[Blog post]. Retrieved from https://kexue.fm/archives/9617
@online{kexuefm-9617,
title={NBCE:使用朴素贝叶斯扩展LLM的Context处理长度},
author={苏剑林},
year={2023},
month={May},
url={\url{https://kexue.fm/archives/9617}},
}
June 8th, 2023
以及苏神我们发现在INT8量化模型上NBCE的效果似乎会略好一些。感觉是不是和TopP的思路相同,实际是量化rounding的引入,降低了解码概率的噪声影响,是不是可以考虑下INT8量化推理,10K的文本不到30G的显存就可以
关于量化,我没具体实践过,所以不确定rounding能否起到类似截断的作用。
不过可以尝试从另一个角度解释。如果你用的模型是chatglm,我认为它是不够好的(至少没有openbuddy),可能是过拟合导致的。而对于过拟合的模型,量化可能有助于减缓过拟合,从而提升效果。
苏神还想请教下,这里说chatglm的过拟合,具体是指哪一方面呢?是指它在指令微调上存在一定的过拟合么?这个过拟合是如何发现的呢?
Thanks~
比如用英文提问,答案可能会出现中英混合,这某种程度上是对中文的过拟合了。其他过拟合我没有特别测,但感觉大家都在6b、7b这个量级下,chatglm表现并不是很优异,猜测是过拟合造成的。
哦哦是这个意思,确实中英平行感觉是差点意思。感谢苏神的回答!
June 8th, 2023
[...]很抱歉,起了这么个具有标题党特征的题目。在写完《NBCE:使用朴素贝叶斯扩展LLM的Context处理长度》之后,笔者就觉得朴素贝叶斯(Naive Bayes)跟Attention机制有很多相同的特征,后来再推导了一下发现,Attention机制其实可以看成是一种广义的、参数化的朴素贝叶斯。既然如此,那么“Attention is All You Need”不也就意味着“Naive Bayes i[...]
June 13th, 2023
[...]苏剑林. (May. 23, 2023). 《NBCE:使用朴素贝叶斯扩展LLM的Context处理长度 》[Blog post]. Retrieved from https://spaces.ac.cn/archives/9617[...]
June 14th, 2023
[...]苏剑林. (May. 23, 2023). 《NBCE:使用朴素贝叶斯扩展LLM的Context处理长度 》[Blog post]. Retrieved from https://spaces.ac.cn/archives/9617[...]
March 4th, 2024
苏神,求教一下:目前看NBCE的实现上是分别用不同的Context+prompt,送给LLM进行批量推理,假设有12段Context,问题有8个。这里有几个问题我不大明白:
1. 因为prompt都是要回答8个问题,但是Context每次只有一个,LLM理论上每个Context都会回答8个问题,那12个Context就会回答12*8=96次,是怎么做到最终8个问题对应8个答案的呢?
2. 鉴于NBCE这种Context+prompt的方案,对于使用LLM的用户来讲,可能只有一个256k长度的大文本,如果使用NBCE,需要事先对这个长文本进行切块处理,每块不高于原始Context长度?如果需要切块,如何处理上下文的联系?
烦请苏神指导一下,谢谢
1、在模型不够强的情况下,对于与问题无关的context,回答问题时的预测概率就会比较低,相对来说问题相关的context就会概率高,因此基于熵的选择能够比较准确地、自适应地定位到正确的context,不过对于模型本身足够强(比如70B的模型)时,NBCE通常效果不好,因此对于问题无关的context,模型会以非常高的概率直接输出“无法回答”之类的回复,从而导致所有问题都是“无法回答”。
2、如果只有一个足够长的context,可以考虑用sliding window的方式进行切分,跟以往做长文本阅读理解一样的思路。