让人惊叹的Johnson-Lindenstrauss引理:应用篇
By 苏剑林 | 2021-09-24 | 35338位读者 | 引用上一篇文章中,我们比较详细地介绍了Johnson-Lindenstrauss引理(JL引理)的理论推导,这一篇我们来关注它的应用。
作为一个内容上本身就跟降维相关的结论,JL引理最基本的自然就是作为一个降维方法来用。但除了这个直接应用外,很多看似不相关的算法,比如局部敏感哈希(LSH)、随机SVD等,本质上也依赖于JL引理。此外,对于机器学习模型来说,JL引理通常还能为我们的维度选择提供一些理论解释。
降维的工具
JL引理提供了一个非常简单直接的“随机投影”降维思路:
给定$N$个向量$v_1,v_2,\cdots,v_N\in\mathbb{R}^m$,如果想要将它降到$n$维,那么只需要从$\mathcal{N}(0,1/n)$中采样一个$n\times m$矩阵$A$,然后$Av_1,Av_2,\cdots,Av_N$就是降维后的结果。
让人惊叹的Johnson-Lindenstrauss引理:理论篇
By 苏剑林 | 2021-09-17 | 82182位读者 | 引用今天我们来学习Johnson-Lindenstrauss引理,由于名字比较长,下面都简称“JL引理”。
个人认为,JL引理是每一个计算机科学的同学都必须了解的神奇结论之一,它是一个关于降维的著名的结果,它也是高维空间中众多反直觉的“维度灾难”现象的经典例子之一。可以说,JL引理是机器学习中各种降维、Hash等技术的理论基础,此外,在现代机器学习中,JL引理也为我们理解、调试模型维度等相关参数提供了重要的理论支撑。
对数的维度
JL引理,可以非常通俗地表达为:
通俗版JL引理: 塞下$N$个向量,只需要$\mathcal{O}(\log N)$维空间。
旁门左道之如何让Python的重试代码更加优雅
By 苏剑林 | 2024-01-14 | 37392位读者 | 引用这篇文章我们讨论一个编程题:如何更优雅地在Python中实现重试。
在文章《新年快乐!记录一下 Cool Papers 的开发体验》中,笔者分享了开发Cool Papers的一些经验,其中就提到了Cool Papers所需要的一些网络通信步骤。但凡涉及到网络通信,就有失败的风险(谁也无法保证网络不会间歇性抽风),所以重试是网络通信的基本操作。此外,当涉及到多进程、数据库、硬件交互等操作时,通常也需要引入重试机制。
在Python中,实现重试并不难,但如何更加简单而又不失可读性地实现重试,还是有一定技巧的。接下来笔者分享一下自己的尝试。
循环重试
完整的重试流程大致上包含循环重试、异常处理、延时等待、后续操作等部分,其标准写法就是用for循环,用“try ... except ...”来捕捉异常,一个参考代码是:
让MathJax更好地兼容谷歌翻译和延时加载
By 苏剑林 | 2024-08-15 | 15515位读者 | 引用很早之前,就有读者提出希望把Cool Papers上面的数学公式渲染一下,因为很多偏数学的论文,它们的摘要甚至标题上都带有LaTeX代码写的数学公式,如果不把这些公式渲染出来,那么看上去就像是一堆乱码,确实会比较影响阅读体验。然而,之前的测试显示,负责渲染公式的MathJax跟谷歌翻译和延时加载都不大兼容,所以尽管需求存在已久,但笔者一直没有把它加上去。
不过好消息是,经过反复查阅和调试,这两天笔者总算把兼容性问题解决了,所以现在大家看到的Cool Papers已经能够渲染数学公式了。这篇文章总结一下解决方案,供大家参考。
让MathJax的数学公式随窗口大小自动缩放
By 苏剑林 | 2024-10-15 | 6371位读者 | 引用随着MathJax的出现和流行,在网页上显示数学公式便逐渐有了标准答案。然而,MathJax(包括其竞品KaTeX)只是负责将网页LaTeX代码转化为数学公式,对于自适应分辨率方面依然没有太好的办法。像本站一些数学文章,因为是在PC端排版好的,所以在PC端浏览效果尚可,但转到手机上看就可能有点难以入目了。
经过测试,笔者得到了一个方案,让MathJax的数学公式也能像图片一样,随着窗口大小而自适应缩放,从而尽量保证移动端的显示效果,在此跟大家分享一波。
背景思路
这个问题的起源是,即便在PC端进行排版,有时候也会遇到一些单行公式的长度超出了网页宽度,但又不大好换行的情况,这时候一个解决方案是用HTML代码手动调整一下公式的字体大小,比如
<span style="font-size:90%">
\begin{equation}一个超长的数学公式\end{equation}
</span>
【中文分词系列】 4. 基于双向LSTM的seq2seq字标注
By 苏剑林 | 2016-08-22 | 460461位读者 | 引用关于字标注法
上一篇文章谈到了分词的字标注法。要注意字标注法是很有潜力的,要不然它也不会在公开测试中取得最优的成绩了。在我看来,字标注法有效有两个主要的原因,第一个原因是它将分词问题变成了一个序列标注问题,而且这个标注是对齐的,也就是输入的字跟输出的标签是一一对应的,这在序列标注中是一个比较成熟的问题;第二个原因是这个标注法实际上已经是一个总结语义规律的过程,以4tag标注为为例,我们知道,“李”字是常用的姓氏,一半作为多字词(人名)的首字,即标记为b;而“想”由于“理想”之类的词语,也有比较高的比例标记为e,这样一来,要是“李想”两字放在一起时,即便原来词表没有“李想”一词,我们也能正确输出be,也就是识别出“李想”为一个词,也正是因为这个原因,即便是常被视为最不精确的HMM模型也能起到不错的效果。
关于标注,还有一个值得讨论的内容,就是标注的数目。常用的是4tag,事实上还有6tag和2tag,而标记分词结果最简单的方法应该是2tag,即标记“切分/不切分”就够了,但效果不好。为什么反而更多数目的tag效果更好呢?因为更多的tag实际上更全面概括了语义规律。比如,用4tag标注,我们能总结出哪些字单字成词、哪些字经常用作开头、哪些字用作末尾,但仅仅用2tag,就只能总结出哪些字经常用作开头,从归纳的角度来看,是不够全面的。但6tag跟4tag比较呢?我觉得不一定更好,6tag的意思是还要总结出哪些字作第二字、第三字,但这个总结角度是不是对的?我觉得,似乎并没有哪些字固定用于第二字或者第三字的,这个规律的总结性比首字和末字的规律弱多了(不过从新词发现的角度来看,6tag更容易发现长词。)。
双向LSTM
基于双向LSTM和迁移学习的seq2seq核心实体识别
By 苏剑林 | 2016-09-06 | 160191位读者 | 引用暑假期间做了一下百度和西安交大联合举办的核心实体识别竞赛,最终的结果还不错,遂记录一下。模型的效果不是最好的,但是胜在“端到端”,迁移性强,估计对大家会有一定的参考价值。
比赛的主题是“核心实体识别”,其实有两个任务:核心识别 + 实体识别。这两个任务虽然有关联,但在传统自然语言处理程序中,一般是将它们分开处理的,而这次需要将两个任务联合在一起。如果只看“核心识别”,那就是传统的关键词抽取任务了,不同的是,传统的纯粹基于统计的思路(如TF-IDF抽取)是行不通的,因为单句中的核心实体可能就只出现一次,这时候统计估计是不可靠的,最好能够从语义的角度来理解。我一开始就是从“核心识别”入手,使用的方法类似QA系统:
1、将句子分词,然后用Word2Vec训练词向量;
2、用卷积神经网络(在这种抽取式问题上,CNN效果往往比RNN要好)卷积一下,得到一个与词向量维度一样的输出;
3、损失函数就是输出向量跟训练样本的核心词向量的cos值。
三顾碎纸复原:基于CNN的碎纸复原
By 苏剑林 | 2016-11-25 | 37641位读者 | 引用赛题回顾
不得不说,2013年的全国数学建模竞赛中的B题真的算是数学建模竞赛中百年难得一遇的好题:题目简洁明了,含义丰富,做法多样,延伸性强,以至于我一直对它念念不忘。因为这个题目,我已经在科学空间写了两篇文章了,分别是《一个人的数学建模:碎纸复原》和《迟到一年的建模:再探碎纸复原》。以前做这道题的时候,还只有一点数学建模的知识,而自从学习了数据挖掘、尤其是深度学习之后,我一直想重做这道题,但一直偷懒。这几天终于把它实现了。
如果对题目还不清楚的读者,可以参考前面两篇文章。碎纸复原共有五个附件,分别代表了五种“碎纸片”,即五种不同粒度的碎片。其中附件1和2都不困难,难度主要集中在附件3、4、5,而3、4、5的实现难度基本是一样的。做这道题最容易想到的思路就是贪心算法,即随便选一张图片,然后找到与它最匹配的图片,然后继续匹配下一张。要想贪心算法有效,最关键是找到一个良好的距离函数,来判断两张碎片是否相邻(水平相邻,这里不考虑垂直相邻)。
最近评论