关于WhiteningBERT原创性的疑问和沟通
By 苏剑林 | 2021-10-09 | 71985位读者 | 引用在文章《你可能不需要BERT-flow:一个线性变换媲美BERT-flow》中,笔者受到BERT-flow的启发,提出了一种名为BERT-whitening的替代方案,它比BERT-flow更简单,但多数数据集下能取得相近甚至更好的效果,此外它还可以用于对句向量降维以提高检索速度。后来,笔者跟几位合作者一起补充了BERT-whitening的实验,并将其写成了英文论文《Whitening Sentence Representations for Better Semantics and Faster Retrieval》,在今年3月29日发布在Arxiv上。
然而,大约一周后,一篇名为《WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach》的论文 (下面简称WhiteningBERT)出现在Arxiv上,内容跟BERT-whitening高度重合,有读者看到后向我反馈WhiteningBERT抄袭了BERT-whitening。本文跟关心此事的读者汇报一下跟WhiteningBERT的作者之间的沟通结果。
时间节点
首先,回顾一下BERT-whitening的相关时间节点,以帮助大家捋一下事情的发展顺序:
WGAN的成功,可能跟Wasserstein距离没啥关系
By 苏剑林 | 2021-03-15 | 59138位读者 | 引用WGAN,即Wasserstein GAN,算是GAN史上一个比较重要的理论突破结果,它将GAN中两个概率分布的度量从f散度改为了Wasserstein距离,从而使得WGAN的训练过程更加稳定,而且生成质量通常也更好。Wasserstein距离跟最优传输相关,属于Integral Probability Metric(IPM)的一种,这类概率度量通常有着更优良的理论性质,因此WGAN的出现也吸引了很多人从最优传输和IPMs的角度来理解和研究GAN模型。
然而,最近Arxiv上的论文《Wasserstein GANs Work Because They Fail (to Approximate the Wasserstein Distance)》则指出,尽管WGAN是从Wasserstein GAN推导出来的,但是现在成功的WGAN并没有很好地近似Wasserstein距离,相反如果我们对Wasserstein距离做更好的近似,效果反而会变差。事实上,笔者一直以来也有这个疑惑,即Wasserstein距离本身并没有体现出它能提升GAN效果的必然性,该论文的结论则肯定了该疑惑,所以GAN能成功的原因依然很迷~
Transformer升级之路:3、从Performer到线性Attention
By 苏剑林 | 2021-04-22 | 62065位读者 | 引用看过笔者之前的文章《线性Attention的探索:Attention必须有个Softmax吗?》和《Performer:用随机投影将Attention的复杂度线性化》的读者,可能会觉得本文的标题有点不自然,因为是先有线性Attention然后才有Performer的,它们的关系为“Performer是线性Attention的一种实现,在保证线性复杂度的同时保持了对标准Attention的近似”,所以正常来说是“从线性Attention到Performer”才对。
然而,本文并不是打算梳理线性Attention的发展史,而是打算反过来思考Performer给线性Attention所带来的启示,所以是“从Performer到线性Attention”。
激活函数
线性Attention的常见形式是
\begin{equation}Attention(\boldsymbol{Q},\boldsymbol{K},\boldsymbol{V})_i = \frac{\sum\limits_{j=1}^n \text{sim}(\boldsymbol{q}_i, \boldsymbol{k}_j)\boldsymbol{v}_j}{\sum\limits_{j=1}^n \text{sim}(\boldsymbol{q}_i, \boldsymbol{k}_j)} = \frac{\sum\limits_{j=1}^n \phi(\boldsymbol{q}_i)^{\top} \varphi(\boldsymbol{k}_j)\boldsymbol{v}_j}{\sum\limits_{j=1}^n \phi(\boldsymbol{q}_i)^{\top} \varphi(\boldsymbol{k}_j)}\end{equation}
Transformer升级之路:4、二维位置的旋转式位置编码
By 苏剑林 | 2021-05-10 | 123357位读者 | 引用在之前的文章《Transformer升级之路:2、博采众长的旋转式位置编码》中我们提出了旋转式位置编码RoPE以及对应的Transformer模型RoFormer。由于笔者主要研究的领域还是NLP,所以本来这个事情对于笔者来说已经完了。但是最近一段时间,Transformer模型在视觉领域也大火,各种Vision Transformer(ViT)层出不穷,于是就有了问题:二维情形的RoPE应该是怎样的呢?
咋看上去,这个似乎应该只是一维情形的简单推广,但其中涉及到的推导和理解却远比我们想象中复杂,本文就对此做一个分析,从而深化我们对RoPE的理解。
二维RoPE
什么是二维位置?对应的二维RoPE又是怎样的?它的难度在哪里?在这一节中,我们先简单介绍二维位置,然后直接给出二维RoPE的结果和推导思路,在随后的几节中,我们再详细给出推导过程。
FlatNCE:小批次对比学习效果差的原因竟是浮点误差?
By 苏剑林 | 2021-07-26 | 49809位读者 | 引用自SimCLR在视觉无监督学习大放异彩以来,对比学习逐渐在CV乃至NLP中流行了起来,相关研究和工作越来越多。标准的对比学习的一个广为人知的缺点是需要比较大的batch_size(SimCLR在batch_size=4096时效果最佳),小batch_size的时候效果会明显降低,为此,后续工作的改进方向之一就是降低对大batch_size的依赖。那么,一个很自然的问题是:标准的对比学习在小batch_size时效果差的原因究竟是什么呢?
近日,一篇名为《Simpler, Faster, Stronger: Breaking The log-K Curse On Contrastive Learners With FlatNCE》对此问题作出了回答:因为浮点误差。看起来真的很让人难以置信,但论文的分析确实颇有道理,并且所提出的改进FlatNCE确实也工作得更好,让人不得不信服。
细微之处
接下来,笔者将按照自己的理解和记号来介绍原论文的主要内容。对比学习(Contrastive Learning)就不帮大家详细复习了,大体上来说,对于某个样本$x$,我们需要构建$K$个配对样本$y_1,y_2,\cdots,y_K$,其中$y_t$是正样本而其余都是负样本,然后分别给每个样本对$(x, y_i)$打分,分别记为$s_1,s_2,\cdots,s_K$,对比学习希望拉大正负样本对的得分差,通常直接用交叉熵作为损失:
\begin{equation}-\log \frac{e^{s_t}}{\sum\limits_i e^{s_i}} = \log \left(\sum_i e^{s_i}\right) - s_t = \log \left(1 + \sum_{i\neq t} e^{s_i - s_t}\right)\end{equation}
曾被嫌弃的预训练任务NSP,做出了优秀的Zero Shot效果
By 苏剑林 | 2021-09-10 | 58697位读者 | 引用在五花八门的预训练任务设计中,NSP通常认为是比较糟糕的一种,因为它难度较低,加入到预训练中并没有使下游任务微调时有明显受益,甚至RoBERTa的论文显示它会带来负面效果。所以,后续的预训练工作一般有两种选择:一是像RoBERTa一样干脆去掉NSP任务,二是像ALBERT一样想办法提高NSP的难度。也就是说,一直以来NSP都是比较“让人嫌弃”的。
不过,反转来了,NSP可能要“翻身”了。最近的一篇论文《NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task--Next Sentence Prediction》(下面简称NSP-BERT)显示NSP居然也可以做到非常不错的Zero Shot效果!这又是一个基于模版(Prompt)的Few/Zero Shot的经典案例,只不过这一次的主角是NSP。
背景回顾
曾经我们认为预训练纯粹就是预训练,它只是为下游任务的训练提供更好的初始化,像BERT的预训练任务有MLM(Masked Language Model和NSP(Next Sentence Prediction),在相当长的一段时间内,大家都不关心这两个预训练任务本身,而只是专注于如何通过微调来使得下游任务获得更好的性能。哪怕是T5将模型参数训练到了110亿,走的依然是“预训练+微调”这一路线。
Efficient GlobalPointer:少点参数,多点效果
By 苏剑林 | 2022-01-25 | 133839位读者 | 引用在《GlobalPointer:用统一的方式处理嵌套和非嵌套NER》中,我们提出了名为“GlobalPointer”的token-pair识别模块,当它用于NER时,能统一处理嵌套和非嵌套任务,并在非嵌套场景有着比CRF更快的速度和不逊色于CRF的效果。换言之,就目前的实验结果来看,至少在NER场景,我们可以放心地将CRF替换为GlobalPointer,而不用担心效果和速度上的损失。
在这篇文章中,我们提出GlobalPointer的一个改进版——Efficient GlobalPointer,它主要针对原GlobalPointer参数利用率不高的问题进行改进,明显降低了GlobalPointer的参数量。更有趣的是,多个任务的实验结果显示,参数量更少的Efficient GlobalPointer反而还取得更好的效果。
大量的参数
这里简单回顾一下GlobalPointer,详细介绍则请读者阅读《GlobalPointer:用统一的方式处理嵌套和非嵌套NER》。简单来说,GlobalPointer是基于内积的token-pair识别模块,它可以用于NER场景,因为对于NER来说我们只需要把每一类实体的“(首, 尾)”这样的token-pair识别出来就行了。
GPLinker:基于GlobalPointer的实体关系联合抽取
By 苏剑林 | 2022-01-30 | 129314位读者 | 引用在将近三年前的百度“2019语言与智能技术竞赛”(下称LIC2019)中,笔者提出了一个新的关系抽取模型(参考《基于DGCNN和概率图的轻量级信息抽取模型》),后被进一步发表和命名为“CasRel”,算是当时关系抽取的SOTA。然而,CasRel提出时笔者其实也是首次接触该领域,所以现在看来CasRel仍有诸多不完善之处,笔者后面也有想过要进一步完善它,但也没想到特别好的设计。
后来,笔者提出了GlobalPointer以及近日的Efficient GlobalPointer,感觉有足够的“材料”来构建新的关系抽取模型了。于是笔者从概率图思想出发,参考了CasRel之后的一些SOTA设计,最终得到了一版类似TPLinker的模型。
基础思路
关系抽取乍看之下是三元组$(s,p,o)$(即subject, predicate, object)的抽取,但落到具体实现上,它实际是“五元组”$(s_h,s_t,p,o_h,o_t)$的抽取,其中$s_h,s_t$分别是$s$的首、尾位置,而$o_h,o_t$则分别是$o$的首、尾位置。
最近评论