分享一次专业领域词汇的无监督挖掘
By 苏剑林 | 2019-04-10 | 87228位读者 | 引用去年 Data Fountain 曾举办了一个“电力专业领域词汇挖掘”的比赛,该比赛有意思的地方在于它是一个“无监督”的比赛,也就是说它考验的是从大量的语料中无监督挖掘专业词汇的能力。
这个显然确实是工业界比较有价值的一个能力,又想着我之前也在无监督新词发现中做过一定的研究,加之“无监督比赛”的新颖性,所以当时毫不犹豫地参加了,然而最终排名并不靠前~
不管怎样,还是分享一下我自己的做法,这是一个真正意义上的无监督做法,也许会对部分读者有些参考价值。
基准对比
首先,新词发现部分,用到了我自己写的库nlp zero,基本思路是先分别对“比赛所给语料”、“自己爬的一部分百科百科语料”做新词发现,然后两者进行对比,就能找到一批“比赛所给语料”的特征词。
从动力学角度看优化算法(四):GAN的第三个阶段
By 苏剑林 | 2019-05-03 | 99404位读者 | 引用在对GAN的学习和思考过程中,我发现我不仅学习到了一种有效的生成模型,而且它全面地促进了我对各种模型各方面的理解,比如模型的优化和理解视角、正则项的意义、损失函数与概率分布的联系、概率推断等等。GAN不单单是一个“造假的玩具”,而是具有深刻意义的概率模型和推断方法。
作为事后的总结,我觉得对GAN的理解可以粗糙地分为三个阶段:
1、样本阶段:在这个阶段中,我们了解了GAN的“鉴别者-造假者”诠释,懂得从这个原理出发来写出基本的GAN公式(如原始GAN、LSGAN),比如判别器和生成器的loss,并且完成简单GAN的训练;同时,我们知道GAN有能力让图片更“真”,利用这个特性可以把GAN嵌入到一些综合模型中。
2、分布阶段:在这个阶段中,我们会从概率分布及其散度的视角来分析GAN,典型的例子是WGAN和f-GAN,同时能基本理解GAN的训练困难问题,比如梯度消失和mode collapse等,甚至能基本地了解变分推断,懂得自己写出一些概率散度,继而构造一些新的GAN形式。
3、动力学阶段:在这个阶段中,我们开始结合优化器来分析GAN的收敛过程,试图了解GAN是否能真的达到理论的均衡点,进而理解GAN的loss和正则项等因素如何影响的收敛过程,由此可以针对性地提出一些训练策略,引导GAN模型到达理论均衡点,从而提高GAN的效果。
HSIC简介:一个有意思的判断相关性的思路
By 苏剑林 | 2019-08-26 | 102589位读者 | 引用前几天,在机器之心看到这样的一个推送《彻底解决梯度爆炸问题,新方法不用反向传播也能训练ResNet》,当然,媒体的标题党作风我们暂且无视,主要看内容即可。机器之心的这篇文章,介绍的是论文《The HSIC Bottleneck: Deep Learning without Back-Propagation》的成果,里边提出了一种通过HSIC Bottleneck来训练神经网络的算法。
坦白说,这篇论文笔者还没有看明白,因为对笔者来说里边的新概念有点多了。不过论文中的“HSIC”这个概念引起了笔者的兴趣。经过学习,终于基本地理解了这个HSIC的含义和来龙去脉,于是就有了本文,试图给出HSIC的一个尽可能通俗(但可能不严谨)的理解。
背景
HSIC全称“Hilbert-Schmidt independence criterion”,中文可以叫做“希尔伯特-施密特独立性指标”吧,跟互信息一样,它也可以用来衡量两个变量之间的独立性。
BN究竟起了什么作用?一个闭门造车的分析
By 苏剑林 | 2019-10-11 | 123752位读者 | 引用BN,也就是Batch Normalization,是当前深度学习模型(尤其是视觉相关模型)的一个相当重要的技巧,它能加速训练,甚至有一定的抗过拟合作用,还允许我们用更大的学习率,总的来说颇多好处(前提是你跑得起较大的batch size)。
那BN究竟是怎么起作用呢?早期的解释主要是基于概率分布的,大概意思是将每一层的输入分布都归一化到$\mathcal{N}(0,1)$上,减少了所谓的Internal Covariate Shift,从而稳定乃至加速了训练。这种解释看上去没什么毛病,但细思之下其实有问题的:不管哪一层的输入都不可能严格满足正态分布,从而单纯地将均值方差标准化无法实现标准分布$\mathcal{N}(0,1)$;其次,就算能做到$\mathcal{N}(0,1)$,这种诠释也无法进一步解释其他归一化手段(如Instance Normalization、Layer Normalization)起作用的原因。
在去年的论文《How Does Batch Normalization Help Optimization?》里边,作者明确地提出了上述质疑,否定了原来的一些观点,并提出了自己关于BN的新理解:他们认为BN主要作用是使得整个损失函数的landscape更为平滑,从而使得我们可以更平稳地进行训练。
本博文主要也是分享这篇论文的结论,但论述方法是笔者“闭门造车”地构思的。窃认为原论文的论述过于晦涩了,尤其是数学部分太不好理解,所以本文试图尽可能直观地表达同样观点。
(注:阅读本文之前,请确保你已经清楚知道BN是什么,本文不再重复介绍BN的概念和流程。)
Seq2Seq中Exposure Bias现象的浅析与对策
By 苏剑林 | 2020-03-09 | 98042位读者 | 引用前些天笔者写了《CRF用过了,不妨再了解下更快的MEMM?》,里边提到了MEMM的局部归一化和CRF的全局归一化的优劣。同时,笔者联想到了Seq2Seq模型,因为Seq2Seq模型的典型训练方案Teacher Forcing就是一个局部归一化模型,所以它也存在着局部归一化所带来的毛病——也就是我们经常说的“Exposure Bias”。带着这个想法,笔者继续思考了一翻,将最后的思考结果记录在此文。
本文算是一篇进阶文章,适合对Seq2Seq模型已经有一定的了解、希望进一步提升模型的理解或表现的读者。关于Seq2Seq的入门文章,可以阅读旧作《玩转Keras之seq2seq自动生成标题》和《从语言模型到Seq2Seq:Transformer如戏,全靠Mask》。
本文的内容大致为:
1、Exposure Bias的成因分析及例子;
2、简单可行的缓解Exposure Bias问题的策略。
积分梯度:一种新颖的神经网络可视化方法
By 苏剑林 | 2020-06-28 | 94909位读者 | 引用本文介绍一种神经网络的可视化方法:积分梯度(Integrated Gradients),它首先在论文《Gradients of Counterfactuals》中提出,后来《Axiomatic Attribution for Deep Networks》再次介绍了它,两篇论文作者都是一样的,内容也大体上相同,后一篇相对来说更易懂一些,如果要读原论文的话,建议大家优先读后一篇。当然,它已经是2016~2017年间的工作了,“新颖”说的是它思路上的创新有趣,而不是指最近发表。
所谓可视化,简单来说就是对于给定的输入$x$以及模型$F(x)$,我们想办法指出$x$的哪些分量对模型的决策有重要影响,或者说对$x$各个分量的重要性做个排序,用专业的话术来说那就是“归因”。一个朴素的思路是直接使用梯度$\nabla_x F(x)$来作为$x$各个分量的重要性指标,而积分梯度是对它的改进。然而,笔者认为,很多介绍积分梯度方法的文章(包括原论文),都过于“生硬”(形式化),没有很好地突出积分梯度能比朴素梯度更有效的本质原因。本文试图用自己的思路介绍一下积分梯度方法。
我们真的需要把训练集的损失降低到零吗?
By 苏剑林 | 2020-07-31 | 69635位读者 | 引用在训练模型的时候,我们需要损失函数一直训练到0吗?显然不用。一般来说,我们是用训练集来训练模型,但希望的是验证集的损失越小越好,而正常来说训练集的损失降低到一定值后,验证集的损失就会开始上升,因此没必要把训练集的损失降低到0。
既然如此,在已经达到了某个阈值之后,我们可不可以做点别的事情来提升模型性能呢?ICML 2020的论文《Do We Need Zero Training Loss After Achieving Zero Training Error?》回答了这个问题。不过论文的回答也仅局限在“是什么”这个层面上,并没很好地描述“为什么”,另外看了知乎上kid丶大佬的解读,也没找到自己想要的答案。因此自己分析了一下,记录在此。
必须要GPT3吗?不,BERT的MLM模型也能小样本学习
By 苏剑林 | 2020-09-27 | 157019位读者 | 引用大家都知道现在GPT3风头正盛,然而,到处都是GPT3、GPT3地推,读者是否记得GPT3论文的名字呢?事实上,GPT3的论文叫做《Language Models are Few-Shot Learners》,标题里边已经没有G、P、T几个单词了,只不过它跟开始的GPT是一脉相承的,因此还是以GPT称呼它。顾名思义,GPT3主打的是Few-Shot Learning,也就是小样本学习。此外,GPT3的另一个特点就是大,最大的版本多达1750亿参数,是BERT Base的一千多倍。
正因如此,前些天Arxiv上的一篇论文《It's Not Just Size That Matters: Small Language Models Are Also Few-Shot Learners》便引起了笔者的注意,意译过来就是“谁说一定要大的?小模型也可以做小样本学习”。显然,这标题对标的就是GPT3,于是笔者饶有兴趣地点进去看看是谁这么有勇气挑战GPT3,又是怎样的小模型能挑战GPT3?经过阅读,原来作者提出通过适当的构造,用BERT的MLM模型也可以做小样本学习,看完之后颇有一种“原来还可以这样做”的恍然大悟感~在此与大家分享一下。
最近评论