Seq2Seq中Exposure Bias现象的浅析与对策
By 苏剑林 | 2020-03-09 | 96589位读者 |前些天笔者写了《CRF用过了,不妨再了解下更快的MEMM?》,里边提到了MEMM的局部归一化和CRF的全局归一化的优劣。同时,笔者联想到了Seq2Seq模型,因为Seq2Seq模型的典型训练方案Teacher Forcing就是一个局部归一化模型,所以它也存在着局部归一化所带来的毛病——也就是我们经常说的“Exposure Bias”。带着这个想法,笔者继续思考了一翻,将最后的思考结果记录在此文。
本文算是一篇进阶文章,适合对Seq2Seq模型已经有一定的了解、希望进一步提升模型的理解或表现的读者。关于Seq2Seq的入门文章,可以阅读旧作《玩转Keras之seq2seq自动生成标题》和《从语言模型到Seq2Seq:Transformer如戏,全靠Mask》。
本文的内容大致为:
1、Exposure Bias的成因分析及例子;
2、简单可行的缓解Exposure Bias问题的策略。
Softmax #
首先,我们来回顾Softmax相关内容。大家都知道,对于向量$(x_1,x_2,\dots,x_n)$,它的Softmax为
\begin{equation}(p_1,p_2,\dots,p_n)=\frac{1}{\sum\limits_{i=1}^n e^{x_i}}\left(e^{x_1},e^{x_2},\dots,e^{x_n}\right)\end{equation}
由于$e^t$是关于$t$的严格单调递增函数,所以如果$x_k$是$x_1,x_2,\dots,x_n$中的最大者,那么$p_k$也是$p_1,p_2,\dots,p_n$中的最大者。
对于分类问题,我们所用的loss一般是交叉熵,也就是
\begin{equation}-\log p_t = \log\left(\sum\limits_{i=1}^n e^{x_i}\right) - x_t\end{equation}
其中$t$是目标类。如文章《寻求一个光滑的最大值函数》所述,上式第一项实际上是$\max\left(x_1,x_2,\dots,x_n\right)$的光滑近似,所以为了形象理解交叉熵,我们可以写出
\begin{equation}-\log p_t \approx \max\left(x_1,x_2,\dots,x_n\right) - x_t\end{equation}
也就是说,交叉熵实际上在缩小目标类得分$x_t$与全局最大值的差距,显然这个差距最小只能为0,并且此时目标类得分就是最大值者。所以,Softmax加交叉熵的效果就是“希望目标类的得分成为最大值”。
Teacher Forcing #
现在,我们来看Seq2Seq,它通过条件分解来建模联合概率分布:
\begin{equation}\begin{aligned}p(\boldsymbol{y}|\boldsymbol{x})=&\,p(y_1,y_2,\dots,y_n|\boldsymbol{x})\\
=&\,p(y_1|\boldsymbol{x})p(y_2|\boldsymbol{x},y_1)\dots p(y_n|\boldsymbol{x},y_1,\dots,y_{n-1})
\end{aligned}\end{equation}
每一项自然也就用Softmax来建模的,即
\begin{equation}\begin{aligned}&p(y_1|\boldsymbol{x})=\frac{e^{f(y_1;\boldsymbol{x})}}{\sum\limits_{y_1}e^{f(y_1;\boldsymbol{x})}},\\
&p(y_2|\boldsymbol{x},y_1)=\frac{e^{f(y_1,y_2;\boldsymbol{x})}}{\sum\limits_{y_2}e^{f(y_1,y_2;\boldsymbol{x})}},\\
&\dots,\\
&p(y_n|\boldsymbol{x},y_1,\dots,y_{n-1})=\frac{e^{f(y_1,y_2,\dots,y_n;\boldsymbol{x})}}{\sum\limits_{y_n}e^{f(y_1,y_2,\dots,y_n;\boldsymbol{x})}}
\end{aligned}\end{equation}
乘起来就是
\begin{equation}p(\boldsymbol{y}|\boldsymbol{x})=\frac{e^{f(y_1;\boldsymbol{x})+f(y_1,y_2;\boldsymbol{x})+\dots+f(y_1,y_2,\dots,y_n;\boldsymbol{x})}}{\left(\sum\limits_{y_1}e^{f(y_1;\boldsymbol{x})}\right)\left(\sum\limits_{y_2}e^{f(y_1,y_2;\boldsymbol{x})}\right)\dots\left(\sum\limits_{y_n}e^{f(y_1,y_2,\dots,y_n;\boldsymbol{x})}\right)}\label{eq:join-target}\end{equation}
而训练目标就是
\begin{equation}-\log p(\boldsymbol{y}|\boldsymbol{x})=-\log p(y_1|\boldsymbol{x})-\log p(y_2|\boldsymbol{x},y_1)-\dots -\log p(y_n|\boldsymbol{x},y_1,\dots,y_{n-1})\end{equation}
这个直接的训练目标就叫做Teacher Forcing,因为在算$-\log p(y_2|\boldsymbol{x},y_1)$的时候我们要知道真实的$y_1$,在算$-\log p(y_3|\boldsymbol{x},y_1,y_2)$我们需要知道真实的$y_1,y_2$,依此类推,这就好像有一个经验丰富的老师预先给我们铺好了大部分的路,让我们只需要求下一步即可。这种方法训练起来简单,而且结合CNN或Transformer那样的模型就可以实现并行的训练,但它可能会带来Exposure Bias问题。
Exposure Bias #
其实Teacher Forcing这个名称本身就意味着它本身会存在Exposure Bias问题。回想一下老师教学生解题的过程,一般的步骤为:
1、第一步应该怎么思考;
2、第一步想出来后,第二步我们有哪些选择;
3、确定了第二步后,第三步我们可以怎么做;
...
n、有了这n-1步后,最后一步就不难想到了。
这个过程其实跟Seq2Seq的Teacher Forcing方案的假设是一样的。有过教学经验的读者就知道,通常来说学生们都能听得频频点头,感觉全都懂了,然后让学生课后自己做题,多数还是一脸懵比。为什么会这样呢?其中一个原因就是Exposure Bias。说白了,问题就在于,老师总是假设学生能想到前面若干步后,然后教学生下一步,但如果前面有一步想错了或者想不出来呢?这时候这个过程就无法进行下去了,也就是没法得到正确答案了,这就是Exposure Bias问题。
Beam Search #
事实上,我们真正做题的时候并不总是这样子,假如我们卡在某步无法确定时,我们就遍历几种选择,然后继续推下去,看后面的结果反过来辅助我们确定前面无法确定的那步。对应到Seq2Seq来说,这其实就相当于基于Beam Search的解码过程。
对于Beam Search,我们应该能发现,beam size并不是越大越好,有些情况甚至是beam size等于1时最好,这看起来有点不合理,因为beam size越大,理论上找到的序列就越接近最优序列,所以应该越有可能正确才对。事实上这也算是Exposure Bias的现象之一。
从式$\eqref{eq:join-target}$我们可以看出,Seq2Seq对目标序列$y_1,y_2,\dots,y_n$的打分函数为:
\begin{equation}f(y_1;\boldsymbol{x})+f(y_1,y_2;\boldsymbol{x})+\dots+f(y_1,y_2,\dots,y_n;\boldsymbol{x})\end{equation}
正常来说,我们希望目标序列是所有候选序列之中分数最高的,根据本文开头介绍的Softmax方法,我们建立的概率分布应该是
\begin{equation}p(\boldsymbol{y}|\boldsymbol{x})=\frac{e^{f(y_1;\boldsymbol{x})+f(y_1,y_2;\boldsymbol{x})+\dots+f(y_1,y_2,\dots,y_n;\boldsymbol{x})}}{\sum\limits_{y_1,y_2,\dots,y_n}e^{f(y_1;\boldsymbol{x})+f(y_1,y_2;\boldsymbol{x})+\dots+f(y_1,y_2,\dots,y_n;\boldsymbol{x})}}\label{eq:ideal-target}\end{equation}
但上式的分母需要遍历所有路径求和,难以实现,而式$\eqref{eq:join-target}$就作为一种折衷的选择得到了广泛应用。但式$\eqref{eq:join-target}$跟式$\eqref{eq:ideal-target}$并不等价,因此哪怕模型已经成功优化,也可能出现“最优序列并不是目标序列”的现象。
简单例子 #
我们来举一个简单例子。设序列长度只有2,候选序列是$(a,b)$和$(c,d)$,而目标序列是$(a,b)$,训练完成后,模型的概率分布情况为
$$\begin{array}{c|c}
\hline
p(a) & p(c)\\
\hline
0.6 & 0.4 \\
\hline
\end{array}\qquad \begin{array}{c|c|c|c}
\hline
p(b|a) & p(d|a) & p(b|c) & p(d|c)\\
\hline
0.55 & 0.45 & 0.1 & 0.9\\
\hline
\end{array}$$
如果beam size为1,那么因为$p(a) > p(c)$,所以第一步只能输出$a$,接着因为$p(b|a) > p(d|a)$,所以第二步只能输出$b$,成功输出了正确序列$(a,b)$。但如果beam size为2,那么第一步输出$(a,0.6),(c,0.4)$,而第二步遍历所有组合,我们得到
\begin{array}{c|c|c|c}
\hline
(a, b) & (a, d) & (c, b) & (c, d)\\
\hline
0.33 & 0.27 & 0.04 & 0.36\\
\hline
\end{array}
所以输出了错误的序列$(c,d)$。
那是因为模型没训练好吗?并不是,前面说过Softmax加交叉熵的目的就是让目标的得分最大,对于第一步我们有$p(a) > p(c)$,所以第一步的训练目标已经达到了,而第二步在$a$已经预先知道的前提下我们有$p(b|a) > p(d|a)$,这说明第二步的训练目标也达到了。因此,模型已经算是训练好了,只不过可能因为模型表达能力限制等原因,得分并没有特别高,但“让目标的得分最大”这个目标已经完成了。
思考对策 #
从上述例子中读者或许可以看出问题所在了:主要是$p(d|c)$太高了,而$p(d|c)$是没有经过训练的,没有任何显式的机制去抑制$p(d|c)$变大,因此就出现了“最优序列并不是目标序列”的现象。
看到这里,读者可能就能想到一个朴素的对策了:添加额外的优化目标,降低那些Beam Search出来的非目标序列不就行了?事实上,这的确是一个有效的解决方法,相关结果发表在2016年的论文《Sequence-to-Sequence Learning as Beam-Search Optimization》。但这样一来几乎要求每步训练前的每个样本都要进行一次Beam Search,计算成本太大。还有一些更新的结果,比如ACL 2019的最佳长论文《Bridging the Gap between Training and Inference for Neural Machine Translation》就是聚焦于解决Exposure Bias问题。此外,通过强化学习直接优化BLEU等方法,也能一定程度上缓解Exposure Bias。
然而,据笔者所了解,这些致力于解决Exposure Bias的方法,大部分都是大刀阔斧地改动了训练过程,甚至会牺牲原来模型的训练并行性(需要递归地采样负样本,如果模型本身是RNN那倒无妨,但如果本身是CNN或Transformer,那伤害就很大了),成本的提升幅度比效果的提升幅度大得多。
构建负样本 #
纵观大部分解决Exposure Bias的论文,以及结合我们前面的例子和体会,不难想到,其主要思想就是构造有代表性的负样本,然后在训练过程中降低这些负样本的概率,所以问题就是如何构造“有代表性”的负样本了。这里给出笔者构思的一种简单策略,实验证明它能一定程度上缓解Exposure Bias,提升文本生成的表现,重要的是,这种策略比较简单,基本能做到即插即用,几乎不损失训练性能。
方法很简单,就是随机替换一下Decoder的输入词(Decoder的输入词有个专门的名字,叫做oracle words),如下图所示:
其中紫色的[R]代表被随机替换的词。其实不少Exposure Bias的论文也是这个思路,只不过随机选词的方案不一样。笔者提出的方案很简单:
1、50%的概率不做改变;
2、50%的概率把输入序列中30%的词替换掉,替换对象为原目标序列的任意一个词。
也就是说,随机替换发生概率是50%,随机替换的比例是30%,随机抽取空间就是目标序列的词集。这个策略的灵感在于:尽管Seq2Seq不一定能完全生成目标序列,但它通常能生成大部分目标序列的词(但顺序可能不对,或者重复出现同一些词),因此这样替换后的输入序列通常可以作为有代表性的负样本。对了,说明一下,50%和30%这两个比例纯粹是拍脑袋的,没仔细调参,因为生成模型调一次实在是太累了。
效果如何呢?笔者做了两个标题(摘要)生成的实验(就是CLGE的前两个),其中baseline是task_seq2seq_autotitle_csl.py,代码开源于:
结果如下表:
\begin{array}{c}
\text{CSL标题生成实验结果}\\
{\begin{array}{c|c|cccc}
\hline
& \text{beam size} & \text{Rouge-L} & \text{Rouge-1} & \text{Rouge-2} & \text{BLEU} \\
\hline
\text{baseline} & 1 & 63.81 & 65.45 & 54.91 & 45.52 \\
\text{随机替换} & 1 & \textbf{64.44} & \textbf{66.09} & \textbf{55.56} & \textbf{46.1} \\
\hline
\text{baseline} & 2 & 64.44 & 66.09 & 55.75 & 46.39 \\
\text{随机替换} & 2 & \textbf{65.04} & \textbf{66.75} & \textbf{56.51} & \textbf{47.19} \\
\hline
\text{baseline} & 3 & 64.75 & 66.34 & 56.06 & 46.7 \\
\text{随机替换} & 3 & \textbf{65.15} & \textbf{66.96} & \textbf{56.74} & \textbf{47.42} \\
\hline
\end{array}}\\
\\
\text{LCSTS摘要生成实验结果}\\
{\begin{array}{c|c|cccc}
\hline
& \text{beam size} & \text{Rouge-L} & \text{Rouge-1} & \text{Rouge-2} & \text{BLEU} \\
\hline
\text{baseline} & 1 & 27.99 & 29.57 & \textbf{18.04} & \textbf{11.72} \\
\text{随机替换} & 1 & \textbf{28.61} & \textbf{29.92} & 17.72 & 11.23 \\
\hline
\text{baseline} & 2 & \textbf{29.2} & 30.7 & \textbf{19.17} & \textbf{12.64} \\
\text{随机替换} & 2 & 29.15 & \textbf{30.79} & 18.56 & 11.75 \\
\hline
\text{baseline} & 3 & \textbf{29.45} & \textbf{30.95} & \textbf{19.5} & \textbf{12.93} \\
\text{随机替换} & 3 & 29.14 & 30.88 & 18.76 & 11.91 \\
\hline
\end{array}}
\end{array}
可以发现,在CSL任务中,基于随机替换的策略稳定提升了文本生成的所有指标,而LCSTS任务的各个指标则各有优劣,考虑到LCSTS本身比较难,各项指标本来就低,所以应该说CSL的结果更有说服力一些。这表明,笔者提出的上述策略确实是一种值得尝试的方案。(注:所有实验都重复了两次然后取平均,所以实验结果应该是比较可靠的了。)
对抗训练 #
思考到这里,我们不妨再“天马行空”一下:既然解决Exposure Bias的思路之一就是要构造有代表性的负样本输入,说白了就是让模型在扰动下依然能预测正确,而前些天我们不是才讨论了一种生成扰动样本的方法吗?不错,那就是对抗训练。如果直接往baseline模型里边加入对抗训练,能不能提升模型的性能呢?简单起见,笔者做了往baseline模型里边梯度惩罚(也算是对抗训练的一种)的实验,结果对比如下:
\begin{array}{c}
\text{CSL标题生成实验结果}\\
{\begin{array}{c|c|cccc}
\hline
& \text{beam size} & \text{Rouge-L} & \text{Rouge-1} & \text{Rouge-2} & \text{BLEU} \\
\hline
\text{baseline} & 1 & 63.81 & 65.45 & 54.91 & 45.52 \\
\text{随机替换} & 1 & 64.44 & 66.09 & 55.56 & 46.1 \\
\text{梯度惩罚} & 1 & \textbf{65.41} & \textbf{67.29} & \textbf{56.64} & \textbf{47.37} \\
\hline
\text{baseline} & 2 & 64.44 & 66.09 & 55.75 & 46.39 \\
\text{随机替换} & 2 & 65.04 & 66.75 & 56.51 & 47.19 \\
\text{梯度惩罚} & 2 & \textbf{65.94} & \textbf{67.84} & \textbf{57.38} & \textbf{48.16} \\
\hline
\text{baseline} & 3 & 64.75 & 66.34 & 56.06 & 46.7 \\
\text{随机替换} & 3 & 65.15 & 66.96 & 56.74 & 47.42 \\
\text{梯度惩罚} & 3 & \textbf{66.1} & \textbf{68.08} & \textbf{57.7} & \textbf{48.56} \\
\hline
\end{array}}\\
\\
\text{LCSTS摘要生成实验结果}\\
{\begin{array}{c|c|cccc}
\hline
& \text{beam size} & \text{Rouge-L} & \text{Rouge-1} & \text{Rouge-2} & \text{BLEU} \\
\hline
\text{baseline} & 1 & 27.99 & 29.57 & 18.04 & 11.72 \\
\text{随机替换} & 1 & 28.61 & 29.92 & 17.72 & 11.23 \\
\text{梯度惩罚} & 1 & \textbf{30.75} & \textbf{31.83} & \textbf{19.38} & \textbf{11.78} \\
\hline
\text{baseline} & 2 & 29.2 & 30.7 & 19.17 & \textbf{12.64} \\
\text{随机替换} & 2 & 29.15 & 30.79 & 18.56 & 11.75 \\
\text{梯度惩罚} & 2 & \textbf{30.88} & \textbf{32.19} & \textbf{19.96} & 12.32 \\
\hline
\text{baseline} & 3 & 29.45 & 30.95 & 19.5 & \textbf{12.93} \\
\text{随机替换} & 3 & 29.14 & 30.88 & 18.76 & 11.91 \\
\text{梯度惩罚} & 3 & \textbf{30.39} & \textbf{31.76} & \textbf{19.74} & 12.14 \\
\hline
\end{array}}
\end{array}
可以看到,对抗训练(梯度惩罚)进一步提升了CSL生成的所有指标,而LCSTS上主要提升的是Roune指标,BLEU则有所下降。因此,对抗训练也可以列入“提升文本生成模型的潜力技巧”名单之中。
本文小结 #
本文讨论了Seq2Seq中的Exposure Bias现象,尝试从直观上和理论上分析Exposure Bias的原因,并给出了简单可行的缓解Exposure Bias问题的对策,其中包括笔者构思的一种随机替换策略,以及基于对抗训练的策略,这两种策略的好处是它们几乎是即插即用的,并且实验表明它们能一定程度上提升文本生成的各个指标。
转载到请包括本文地址:https://kexue.fm/archives/7259
更详细的转载事宜请参考:《科学空间FAQ》
如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。
如果您觉得本文还不错,欢迎分享/打赏本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!
如果您需要引用本文,请参考:
苏剑林. (Mar. 09, 2020). 《Seq2Seq中Exposure Bias现象的浅析与对策 》[Blog post]. Retrieved from https://kexue.fm/archives/7259
@online{kexuefm-7259,
title={Seq2Seq中Exposure Bias现象的浅析与对策},
author={苏剑林},
year={2020},
month={Mar},
url={\url{https://kexue.fm/archives/7259}},
}
November 20th, 2020
csl只有训练集和验证集,没有测试集,能够提供下测试集网盘下载地址吗
July 20th, 2021
你好 拜读了https://github.com/bojone/exposure_bias/blob/master/random_replacement.py中的源码,有个小疑问想请教一下:
代码第96行:
train_model = Model(model.inputs + [o_in], model.outputs + [o_in])
Model中的outputs为什么要加[o_in],因为在第101行也只是用到train_model.output[0]的值,个人认为第96行可以改成:
train_model = Model(model.inputs + [o_in], model.outputs)
不知这样理解是否正确?
这是我的习惯而已(有输入就有输出),如果你删掉没有报错,那就继续删掉好了。
August 3rd, 2021
这个exposure bias 这个bingo 在一篇文章中有提到,schedule 的方法,采用输入端一定概率使用前一步结果,一定概率使用正确结果,并且随着训练加深,把概率给减小到0
问题是“前一步的结果”需要串行地预测,牺牲了并行性,得不偿失。