自己实现了一个bert4keras
By 苏剑林 | 2019-08-27 | 181310位读者 | 引用分享个人实现的bert4keras:
VQ-VAE的简明介绍:量子化自编码器
By 苏剑林 | 2019-06-24 | 328001位读者 | 引用你跳绳的时候,想过绳子的形状曲线是怎样的吗?
By 苏剑林 | 2019-07-06 | 50518位读者 | 引用用时间换取效果:Keras梯度累积优化器
By 苏剑林 | 2019-07-08 | 80949位读者 | 引用现在Keras中你也可以用小的batch size实现大batch size的效果了——只要你愿意花$n$倍的时间,可以达到$n$倍batch size的效果,而不需要增加显存。
Github地址:https://github.com/bojone/accum_optimizer_for_keras
扯淡
在一两年之前,做NLP任务都不用怎么担心OOM问题,因为相比CV领域的模型,其实大多数NLP模型都是很浅的,极少会显存不足。幸运或者不幸的是,Bert出世了,然后火了。Bert及其后来者们(GPT-2、XLNET等)都是以足够庞大的Transformer模型为基础,通过足够多的语料预训练模型,然后通过fine tune的方式来完成特定的NLP任务。
“让Keras更酷一些!”:层中层与mask
By 苏剑林 | 2019-07-16 | 151160位读者 | 引用这一篇“让Keras更酷一些!”将和读者分享两部分内容:第一部分是“层中层”,顾名思义,是在Keras中自定义层的时候,重用已有的层,这将大大减少自定义层的代码量;另外一部分就是应读者所求,介绍一下序列模型中的mask原理和方法。
层中层
在《“让Keras更酷一些!”:精巧的层与花式的回调》一文中我们已经介绍过Keras自定义层的基本方法,其核心步骤是定义build
和call
两个函数,其中build
负责创建可训练的权重,而call
则定义具体的运算。
拒绝重复劳动
经常用到自定义层的读者可能会感觉到,在自定义层的时候我们经常在重复劳动,比如我们想要增加一个线性变换,那就要在build
中增加一个kernel
和bias
变量(还要自定义变量的初始化、正则化等),然后在call
里边用K.dot
来执行,有时候还需要考虑维度对齐的问题,步骤比较繁琐。但事实上,一个线性变换其实就是一个不加激活函数的Dense
层罢了,如果在自定义层时能重用已有的层,那显然就可以大大节省代码量了。
seq2seq之双向解码
By 苏剑林 | 2019-08-09 | 47000位读者 | 引用在文章《玩转Keras之seq2seq自动生成标题》中我们已经基本探讨过seq2seq,并且给出了参考的Keras实现。
本文则将这个seq2seq再往前推一步,引入双向的解码机制,它在一定程度上能提高生成文本的质量(尤其是生成较长文本时)。本文所介绍的双向解码机制参考自《Synchronous Bidirectional Neural Machine Translation》,最后笔者也是用Keras实现的。
背景介绍
研究过seq2seq的读者都知道,常见的seq2seq的解码过程是从左往右逐字(词)生成的,即根据encoder的结果先生成第一个字;然后根据encoder的结果以及已经生成的第一个字,来去生成第二个字;再根据encoder的结果和前两个字,来生成第三个词;依此类推。总的来说,就是在建模如下概率分解
\begin{equation}p(Y|X)=p(y_1|X)p(y_2|X,y_1)p(y_3|X,y_1,y_2)\cdots\label{eq:p}\end{equation}
百度实体链接比赛后记:行为建模和实体链接
By 苏剑林 | 2019-09-03 | 87931位读者 | 引用前几个月曾参加了百度的实体链接比赛,这是CCKS2019的评测任务之一,官方称之为“实体链指”,比赛于前几个星期完全结束。笔者最终的F1是0.78左右(冠军是0.80),排在第14名,成绩并不突出(唯一的特色是模型很轻量级,GTX1060都可以轻松跑起来),所以本文只是纯粹的记录过程,大牛们请一笑置之~
赛题介绍
所谓实体链接,主要指的是在已有一个知识库的情况下,预测输入query的某个实体对应知识库id。也就是说,知识库里边记录了很多实体,对于同一个名字的实体可能会有多个解释,每个解释用一个唯一id编号,我们要做的就是预测query中的实体究竟对应哪一个解释(id)。这是基于知识图谱的问答系统的必要步骤。
重新写了之前的新词发现算法:更快更好的新词发现
By 苏剑林 | 2019-09-09 | 97874位读者 | 引用新词发现是NLP的基础任务之一,主要是希望通过无监督发掘一些语言特征(主要是统计特征),来判断一批语料中哪些字符片段可能是一个新词。本站也多次围绕“新词发现”这个话题写过文章,比如:
在这些文章之中,笔者觉得理论最漂亮的是《基于语言模型的无监督分词》,而作为新词发现算法来说综合性能比较好的应该是《更好的新词发现算法》,本文就是复现这篇文章的新词发现算法。
最近评论