1 Oct

【NASA每日一图】春分时刻的土星

图片说明:春分点的土星,版权:Cassini Imaging Team, ISS, JPL, ESA, NASA

图片说明:春分点的土星,版权:Cassini Imaging Team, ISS, JPL, ESA, NASA

点击阅读全文...

8 Oct

【NASA每日一图】撞击目标:凯布斯月球坑

NASA月球探测器撞击目标——凯布斯(Cabeus )月球坑

NASA月球探测器撞击目标——凯布斯(Cabeus )月球坑

(图片说明:凯布斯(Cabeus )月球坑,版权:NMSU/MSFC Tortugas Observatory)

点击阅读全文...

7 Nov

人不能忘本|我的数学竞赛题

现在我已经高一了,个人感觉发展还是挺好的。至少我走上了“科学”这一条正确之路,发展成独特的、创新的我。在学习上,我可以说无愧于我自己。这一切,都因为他。

数学竞赛训练题目·回忆11

数学竞赛训练题目·回忆11

他是谁?那是我五年级的数学老师——

点击阅读全文...

31 Jan

星座计划“破产”,重返月球搁浅

法新社报道说,一名不愿意透露姓名的白宫顾问说,“(重返月球的)星座计划已经死亡。”

新一代探月飞行器假想图

新一代探月飞行器假想图

28日,美国官员透露,布什政府于2004年通过的、计划耗资高达2300亿美元的“重返月球”计划实际上已经被美国总统奥巴马搁浅了。相反,奥巴马在未来五年将向美国国家航空航天局(NASA)拨款59亿美元,其中一部分将用于延长国际太空站的使用寿命至2020年,另外还将用于在航天飞机退役后,鼓励私人公司研制航天器来向空间站运送宇航员。随着“重返月球”计划的终结,新一代“土星”系列火箭、登月飞船、月球车等一系列相关设备的研制计划也将终止,可以在很大程度上减轻美国政府的财政压力。

点击阅读全文...

7 Nov

为什么是抛物线?——聚光面研究

很多读者都知道,反射望远镜、射电望远镜、太阳能集热器等都有一个抛物状的面,它们都是利用了抛物面能将平行射入的光汇聚到一个点(焦点)上的性质。如果问为什么抛物面具有此性质,相信很多高中生都可以利用抛物线的相关知识来证明。但是,如果反过来问:为什么具有此性质的曲面是抛物面?相信会难倒一部分读者。我们来尝试寻找这一曲线(由于对称的原因,这个曲面可以看作由曲线旋转而成,因此我们可以研究曲线)。

世上最大单孔径射电望远镜

世上最大单孔径射电望远镜

点击阅读全文...

19 Jun

向量结合复数:常曲率曲线(1)

在之前的一篇向量系列的文章中,我们通过结合物理与向量来巧妙地推导出了曲线(包括平面和空间的)的曲率半径为
$$R=\frac{v^2}{a_c}=\frac{|\dot{\vec{r}}|^3}{|\dot{\vec{r}}\times \ddot{\vec{r}}|}\tag{1}$$
曲率则是曲率半径的导数:$\rho=\frac{1}{R}$。我们反过来思考一下:曲率恒定的平面曲线是否只有圆?

答案貌似是很显然的,我们需要证明一下。

由于只是考虑平面情况,我们先设$\dot{\vec{r}}=(v cos\theta,v sin\theta)=z=ve^{i\theta}$,代入(1)得到
$\frac{\dot{\theta}}{v}=\rho$————(2)

点击阅读全文...

19 Jul

一道整数边三角形题目

这是一道来自“数联天地”的题目:

三边长均为整数的三角形,周长为1000,其中一个内角是另外一个内角的两倍。求三边长度

咋看上去这是一道几何题目,但实际上这是一道初等数论题,而且主要是不定方程问题。类似的题目在数学竞赛中其实有可能出到,在这里和大家探讨一番。话说回来,其实笔者小时候很喜欢数论方面的内容的,在小学和初中,经常围绕着“素数”、“完全数”、“亲和数”、“大数分解”等等名词钻研看书。现在学习了微积分等内容之后,兴趣逐渐转向了实用性较强的数学,因而数论内容的水平不高,大家见笑了。

点击阅读全文...

26 Jun

费曼积分法——积分符号内取微分(4)

趁着早上有空,就赶紧把这篇文章写好吧。下午高考成绩要公布了,公布后也许又会有一段时间忙碌了。这应该是“费曼积分法”系列最后一篇文章了。它主要讲的还是费曼积分法的一个实例。不同的是,这是BoJone首次独立地用费曼积分法解决了一个问题。之前提到的一些例子,都是书本提供并结合了提示,BoJone才把它们算出来的。所以这个问题有着点点纪念意义。

数学研发论坛上wayne曾求证这样的命题:

$\int_0^{\infty}\frac{f(x,2m-1)-\sin x}{x^{2m+1}}dx$其中,f(x,2m-1)表示sinx的2m-1阶泰勒展开
如m=1时,
$$\int_0^{\infty}\frac{x-\sin x}{x^3}dx$$
m=2时
$$\int_0^{\infty}\frac{x-\frac{x^3}{6}-\sin x}{x^5}dx$$
借助软件我发现结果是:
$\frac{\pi(-1)^{m-1}}{2(2m)!}$

点击阅读全文...