26 Mar

GELU的两个初等函数近似是怎么来的

GELU,全称为Gaussian Error Linear Unit,也算是RELU的变种,是一个非初等函数形式的激活函数。它由论文《Gaussian Error Linear Units (GELUs)》提出,后来被用到了GPT中,再后来被用在了BERT中,再再后来的不少预训练语言模型也跟着用到了它。随着BERT等预训练语言模型的兴起,GELU也跟着水涨船高,莫名其妙地就成了热门的激活函数了。

gelu函数图像

gelu函数图像

在GELU的原始论文中,作者不仅提出了GELU的精确形式,还给出了两个初等函数的近似形式,本文来讨论它们是怎么得到的。

点击阅读全文...

2 Apr

bert4keras在手,baseline我有:百度LIC2020

百度的“2020语言与智能技术竞赛”开赛了,今年有五个赛道,分别是机器阅读理解、推荐任务对话、语义解析、关系抽取、事件抽取。每个赛道中,主办方都给出了基于PaddlePaddle的baseline模型,这里笔者也基于bert4keras给出其中三个赛道的个人baseline,从中我们可以看到用bert4keras搭建baseline模型的方便快捷与简练。

思路简析

这里简单分析一下这三个赛道的任务特点以及对应的baseline设计。

点击阅读全文...

29 Apr

节省显存的重计算技巧也有了Keras版了

不少读者最近可能留意到了公众号文章《BERT重计算:用22.5%的训练时间节省5倍的显存开销(附代码)》,里边介绍了一个叫做“重计算”的技巧,简单来说就是用来省显存的方法,让平均训练速度慢一点,但batch_size可以增大好几倍。该技巧首先发布于论文《Training Deep Nets with Sublinear Memory Cost》,其实在2016年就已经提出了,只不过似乎还没有特别流行起来。

探索

公众号文章提到该技巧在pytorch和paddlepaddle都有原生实现了,但tensorflow还没有。但事实上从tensorflow 1.8开始,tensorflow就已经自带了该功能了,当时被列入了tf.contrib这个子库中,而从tensorflow 1.15开始,它就被内置为tensorflow的主函数之一,那就是tf.recompute_grad

找到tf.recompute_grad之后,笔者就琢磨了一下它的用法,经过一番折腾,最终居然真的成功地用起来了,居然成功地让batch_size从48增加到了144!然而,在继续整理测试的过程中,发现这玩意居然在tensorflow 2.x是失效的...于是再折腾了两天,查找了各种资料并反复调试,最终算是成功地补充了这一缺陷。

最后是笔者自己的开源实现:

该实现已经内置在bert4keras中,使用bert4keras的读者可以升级到最新版本(0.7.5+)来测试该功能。

点击阅读全文...

11 May

AdaX优化器浅析(附开源实现)

这篇文章简单介绍一个叫做AdaX的优化器,来自《AdaX: Adaptive Gradient Descent with Exponential Long Term Memory》。介绍这个优化器的原因是它再次印证了之前在《AdaFactor优化器浅析(附开源实现)》一文中提到的一个结论,两篇文章可以对比着阅读。

Adam & AdaX

AdaX的更新格式是
\begin{equation}\left\{\begin{aligned}&g_t = \nabla_{\theta} L(\theta_t)\\
&m_t = \beta_1 m_{t-1} + \left(1 - \beta_1\right) g_t\\
&v_t = (1 + \beta_2) v_{t-1} + \beta_2 g_t^2\\
&\hat{v}_t = v_t\left/\left(\left(1 + \beta_2\right)^t - 1\right)\right.\\
&\theta_t = \theta_{t-1} - \alpha_t m_t\left/\sqrt{\hat{v}_t + \epsilon}\right.
\end{aligned}\right.\end{equation}
其中$\beta_2$的默认值是$0.0001$。对了,顺便附上自己的Keras实现:https://github.com/bojone/adax

点击阅读全文...

18 May

鱼与熊掌兼得:融合检索和生成的SimBERT模型

前段时间我们开放了一个名为SimBERT的模型权重,它是以Google开源的BERT模型为基础,基于微软的UniLM思想设计了融检索与生成于一体的任务,来进一步微调后得到的模型,所以它同时具备相似问生成和相似句检索能力。不过当时除了放出一个权重文件和示例脚本之外,未对模型原理和训练过程做进一步说明。在这篇文章里,我们来补充这部分内容。

UniLM

UniLM是一个融合NLU和NLG能力的Transformer模型,由微软在去年5月份提出来的,今年2月份则升级到了v2版本。我们之前的文章《从语言模型到Seq2Seq:Transformer如戏,全靠Mask》就简单介绍过UniLM,并且已经集成到了bert4keras中。

UniLM的核心是通过特殊的Attention Mask来赋予模型具有Seq2Seq的能力。假如输入是“你想吃啥”,目标句子是“白切鸡”,那UNILM将这两个句子拼成一个:[CLS] 你 想 吃 啥 [SEP] 白 切 鸡 [SEP],然后接如图的Attention Mask:

UniLM的Mask

UniLM的Mask

点击阅读全文...

1 Jun

提高模型的泛化性能是机器学习致力追求的目标之一。常见的提高泛化性的方法主要有两种:第一种是添加噪声,比如往输入添加高斯噪声、中间层增加Dropout以及进来比较热门的对抗训练等,对图像进行随机平移缩放等数据扩增手段某种意义上也属于此列;第二种是往loss里边添加正则项,比如$L_1, L_2$惩罚、梯度惩罚等。本文试图探索几种常见的提高泛化性能的手段的关联。

随机噪声

我们记模型为$f(x)$,$\mathcal{D}$为训练数据集合,$l(f(x), y)$为单个样本的loss,那么我们的优化目标是
\begin{equation}\mathop{\text{argmin}}_{\theta} L(\theta)=\mathbb{E}_{(x,y)\sim \mathcal{D}}[l(f(x), y)]\end{equation}
$\theta$是$f(x)$里边的可训练参数。假如往模型输入添加噪声$\varepsilon$,其分布为$q(\varepsilon)$,那么优化目标就变为
\begin{equation}\mathop{\text{argmin}}_{\theta} L_{\varepsilon}(\theta)=\mathbb{E}_{(x,y)\sim \mathcal{D}, \varepsilon\sim q(\varepsilon)}[l(f(x + \varepsilon), y)]\end{equation}
当然,可以添加噪声的地方不仅仅是输入,也可以是中间层,也可以是权重$\theta$,甚至可以是输出$y$(等价于标签平滑),噪声也不一定是加上去的,比如Dropout是乘上去的。对于加性噪声来说,$q(\varepsilon)$的常见选择是均值为0、方差固定的高斯分布;而对于乘性噪声来说,常见选择是均匀分布$U([0,1])$或者是伯努利分布。

添加随机噪声的目的很直观,就是希望模型能学会抵御一些随机扰动,从而降低对输入或者参数的敏感性,而降低了这种敏感性,通常意味着所得到的模型不再那么依赖训练集,所以有助于提高模型泛化性能。

点击阅读全文...

5 Jun

为什么梯度裁剪能加速训练过程?一个简明的分析

本文介绍来自MIT的一篇ICLR 2020满分论文《Why gradient clipping accelerates training: A theoretical justification for adaptivity》,顾名思义,这篇论文就是分析为什么梯度裁剪能加速深度学习的训练过程。原文很长,公式很多,还有不少研究复杂性的概念,说实话对笔者来说里边的大部分内容也是懵的,不过大概能捕捉到它的核心思想:引入了比常用的L约束更宽松的约束条件,从新的条件出发论证了梯度裁剪的必要性。本文就是来简明分析一下这个过程,供读者参考。

梯度裁剪

假设需要最小化的函数为$f(\theta)$,$\theta$就是优化参数,那么梯度下降的更新公式就是
\begin{equation}\theta \leftarrow \theta-\eta \nabla_{\theta} f(\theta)\end{equation}
其中$\eta$就是学习率。而所谓梯度裁剪(gradient clipping),就是根据梯度的模长来对更新量做一个缩放,比如
\begin{equation}\theta \leftarrow \theta- \eta \nabla_{\theta} f(\theta)\times \min\left\{1, \frac{\gamma}{\Vert \nabla_{\theta} f(\theta)\Vert}\right\}\label{eq:clip-1}\end{equation}
或者
\begin{equation}\theta \leftarrow \theta- \eta \nabla_{\theta} f(\theta)\times \frac{\gamma}{\Vert \nabla_{\theta} f(\theta)\Vert+\gamma}\label{eq:clip-2}\end{equation}
其中$\gamma > 0$是一个常数。这两种方式都被视为梯度裁剪,总的来说就是控制更新量的模长不超过一个常数,第二种形式也跟RMSProp等自适应学习率优化器相关。此外,更精确地,我们有下面的不等式
\begin{equation}\frac{1}{2}\min\left\{1, \frac{\gamma}{\Vert \nabla_{\theta} f(\theta)\Vert}\right\}\leq \frac{\gamma}{\Vert \nabla_{\theta} f(\theta)\Vert+\gamma}\leq \min\left\{1, \frac{\gamma}{\Vert \nabla_{\theta} f(\theta)\Vert}\right\}\end{equation}
也就是说两者是可以相互控制的,所以其实两者基本是等价的。

点击阅读全文...

7 Sep

动手做个DialoGPT:基于LM的生成式多轮对话模型

前段时间刷Arixv的时候,发现清华大学开源了一个大规模的中文闲聊语料库LCCC(论文链接项目地址),从开源的文件上来看,这可能是目前开源的数量最大、质量最好的闲聊语料库了,而且还包含了部分多轮对话聊天,总的来说可玩性还是蛮强的。笔者也被它吸引到了,尝试着用它来训练了一个闲聊对话模型,结果看上去还是不错的,在此分享一下自己的经验。

利用单向语言模型做多轮对话示意图

利用单向语言模型做多轮对话示意图

点击阅读全文...