16 Jul

Linux下的误删大坑与简单的恢复技巧

警告

以下内容包含诸多高危动作,请勿随意模仿。未成年人请在父母的陪同下观看~(^_^)

自杀式

Linux系统(下面内容同时适用于Mac OS)以开源自由闻名,然而有些时候它也开放过头了,而笔者也被它无比开发的特性坑了好几次(当然,主要是笔者使用习惯不好),遂总结分享,供大家娱乐。

最经典的例子就是,通过以下命令就可以实现“自杀”:

sudo rm / -rf

这就把你的Linux系统给毁了。显然,如果是在Windows中,这相当于在操作系统中格式化系统盘,这是绝对不允许的。

点击阅读全文...

1 Aug

椭圆的周长与面积

椭圆面积和周长的求法,看上去没有什么区别。不过实际上它们的难度有着天壤之别。

椭圆所包围的面积是$S=\pi ab$,这里的a和b是半长轴和半短轴。仅根据椭圆标准方程就可以推导出来。

目前还没有找到椭圆周长的一般公式,要想精确求解,只有代入以下无穷级数:
$$C=2\pi a [1 - (1/2)^2 (\frac{c}{a})^2 - ({1\cdot 3}/{2\cdot 4})^2{c^4}/{3a^4} - ({1\cdot 3\cdot 5}/{2\cdot 4\cdot 6})^2{c^6}/{5a^6}-...]$$
可以写成:
$$C = 2\pi a \sum_{n=0}^{\infty} { - [\prod_{m=1}^n ({2m-1}/{2m})]^2 {c^{2n}}/{a^{2n}(2n - 1)}}$$

距离c 叫做椭圆的线性离心率,等于从中心到任一焦点的距离

点击阅读全文...

19 Oct

【理解黎曼几何】6. 曲率的计数与计算(Python)

曲率的独立分量

黎曼曲率张量是一个非常重要的张量,当且仅当它全部分量为0时,空间才是平直的。它也出现在爱因斯坦的场方程中。总而言之,只要涉及到黎曼几何,黎曼曲率张量就必然是核心内容。

已经看到,黎曼曲率张量有4个指标,这也意味着它有$n^4$个分量,$n$是空间的维数。那么在2、3、4维空间中,它就有16、81、256个分量了,可见,要计算它,是一件相当痛苦的事情。幸好,这个张量有很多的对称性质,使得独立分量的数目大大减少,我们来分析这一点。

首先我们来导出黎曼曲率张量的一些对称性质,这部分内容是跟经典教科书是一致的。定义
$$R_{\mu\alpha\beta\gamma}=g_{\mu\nu}R^{\nu}_{\alpha\beta\gamma} \tag{50} $$
定义这个量的原因,要谈及逆变张量和协变张量的区别,我们这里主要关心几何观,因此略过对张量的详细分析。这个量被称为完全协变的黎曼曲率张量,有时候也直接叫做黎曼曲率张量,只要不至于混淆,一般不做区分。通过略微冗长的代数运算(在一般的微分几何、黎曼几何或者广义相对论教材中都有),可以得到
$$\begin{aligned}&R_{\mu\alpha\beta\gamma}=-R_{\mu\alpha\gamma\beta}\\
&R_{\mu\alpha\beta\gamma}=-R_{\alpha\mu\beta\gamma}\\
&R_{\mu\alpha\beta\gamma}=R_{\beta\gamma\mu\alpha}\\
&R_{\mu\alpha\beta\gamma}+R_{\mu\beta\gamma\alpha}+R_{\mu\gamma\alpha\beta}=0
\end{aligned} \tag{51} $$

点击阅读全文...

14 Nov

科学空间相册上线,与你分享科学图片

科学空间相册平台正式上线,网址为:
http://album.spaces.ac.cn/

科学空间相册截图

科学空间相册截图

点击阅读全文...

8 Jul

百科翻译:氢氧化钠(NaOH)的详细介绍

对于我们来说,维基百科是一个难得的资料库,但是与其英文版相比,中文版就相形见绌了,就好像本文中所讲的氢氧化钠,在中文版的资料为http://zh.wikipedia.org/w/index.php?title=NaOH&variant=zh-cn;而在英文版的资料为http://en.wikipedia.org/wiki/NaOH 可见英文版本是多么丰富。为了使大家能够更多地了解到科学,笔者特地翻译了一些英文版的维基百科中一些资料。

点击阅读全文...

28 Jan

【理科生读小说】来谈谈“四两拨千斤”

多彩金庸

在金庸笔下(其实很多武侠小说都如此),武功可以分三种:第一种是实打实的猛,如洪七公的降龙十八掌、金轮法王的龙象般若功等,它们的特点是主要特点是刚猛,比如

乔峰的降龙二十八掌是丐帮前任帮主汪剑通所传,但乔峰生俱异禀,于武功上得天独厚,他这降龙二十八掌摧枯拉朽,无坚不破,较之汪帮主尤有胜过。乔峰见对方双掌齐推,自己如以单掌相抵,倘若拼成平手,自己似乎稍占上风,不免有失恭敬,于是也双掌齐出。他左右双掌中所使掌力,也仍都是外三内七,将大部分掌力留劲不发。

——出自《天龙八部》世纪新修版

第二种是以虚招为主,也就是说你不能比对手猛,你骗倒对手也行,比如桃花岛的落英神剑掌:

这套掌法是黄药师观赏桃花岛中桃花落英缤纷而创制,出招变化多端,还讲究姿势之美。她双臂挥动,四方八面都是掌影,或五虚一实,或八虚一实,直似桃林中狂风忽起、万花齐落,妙在手足飘逸,宛若翩翩起舞,但她一来功力尚浅,二来心存顾惜,未能出掌凌厉如剑。郭靖眼花缭乱,哪里还守得住门户,不提防啪啪啪啪,左肩右肩、前胸后背,接连中了四掌,黄蓉全未使力,郭靖自也不觉疼痛。

——出自《射雕英雄传》世纪新修版

第三种是以巧招为主,它不求一味刚猛,也不一味虚虚实实,而且讲究用力恰到好处,起到“以柔克刚”、“四两拨千斤”之效。显然,这种武功的代表作是太极,另外打狗棒法、乾坤大挪移、还有全真教和古墓派的武功也暗含了这个道理,比如:

点击阅读全文...

16 Aug

微积分学习(一):极限

本文不是微积分教程,而是发表自己学习中的一些看法,以及与同好们讨论相关问题。

拿起任何一本“微积分”教程,都可以看见那专业而严格的数学语言,因此很多人望而生畏。的确,由于牛顿和莱布尼茨创立的微积分是不严格的,因此引发了第二次数学危机。经过法国数学家柯西和德国数学家魏尔斯特拉斯的努力,使得微积分有了前所未有的严密化,克服了第二次数学危机。加之后来的第三次数学危机,数学就更加严密了。

但是对于初学者,严密化的微积分令人十分费解。因此,我们不妨按照微积分的创立顺序,即“不严密——严密”的顺序来学习。这样不仅能够让我们更高效率地学习,而且增加学习数学的兴趣。

点击阅读全文...

23 Jan

《积分公式大全》电子书

注:2019.02.13 由科学空间苏剑林(https://kexue.fm)更新,修正公式76,并简化latex。

物理、天文研究得深入了,微积分的应用自然也就多了(其实很多内容都用到微积分)。所以弄出一个几何或者力学问题,随手就列出一道积分或者微分方程,这时求解是最重要的。对于我来说,求导数可以娓娓道来,轻松而得;而积分则比较困难(这与个人的技巧有关,更重要的是事实:导数几乎有通用的公式,而积分只能“凑”出来)。

因此,很多积分干脆依靠现成的公式,懒得去推导了。然后,并非随时随地都有《数学分析》在手的,对计算机数学软件的实用又不大熟悉,这时候只能够求助这一本《积分表》了。只要不是故意去钻那些竞赛级别的数学难题,这已经足够应付物理等方面的应用了。

这时候就这也不用愁到处找$\int \sqrt{a^2-x^2}dx$的结果了。

点击阅读全文...