缓存与效果的极限拉扯:从MHA、MQA、GQA到MLA
By 苏剑林 | 2024-05-13 | 66491位读者 |前几天,幻方发布的DeepSeek-V2引起了大家的热烈讨论。首先,最让人哗然的是1块钱100万token的价格,普遍比现有的各种竞品API便宜了两个数量级,以至于有人调侃“这个价格哪怕它输出乱码,我也会认为这个乱码是一种艺术”;其次,从模型的技术报告看,如此便宜的价格背后的关键技术之一是它新提出的MLA(Multi-head Latent Attention),这是对GQA的改进,据说能比GQA更省更好,也引起了读者的广泛关注。
接下来,本文将跟大家一起梳理一下从MHA、MQA、GQA到MLA的演变历程,并着重介绍一下MLA的设计思路。
MHA #
MHA(Multi-Head Attention),也就是多头注意力,是开山之作《Attention is all you need》所提出的一种Attention形式,可以说它是当前主流LLM的基础工作。在数学上,多头注意力MHA等价于多个独立的单头注意力的拼接,假设输入的(行)向量序列为$\boldsymbol{x}_1,\boldsymbol{x}_2,\cdots,\boldsymbol{x}_l$,其中$\boldsymbol{x}_i\in\mathbb{R}^d$,那么MHA可以形式地记为
\begin{equation}
\begin{gathered}
\boldsymbol{o}_t = \left[\boldsymbol{o}_t^{(1)}, \boldsymbol{o}_t^{(2)}, \cdots, \boldsymbol{o}_t^{(h)}\right] \\[10pt]
\boldsymbol{o}_t^{(s)} = Attention\left(\boldsymbol{q}_t^{(s)}, \boldsymbol{k}_{\leq t}^{(s)} ,\boldsymbol{v}_{\leq t}^{(s)}\right)\triangleq\frac{\sum_{i\leq t}\exp\left(\boldsymbol{q}_t^{(s)} \boldsymbol{k}_i^{(s)}{}^{\top}\right)\boldsymbol{v}_i^{(s)}}{\sum_{i\leq t}\exp\left(\boldsymbol{q}_t^{(s)} \boldsymbol{k}_i^{(s)}{}^{\top}\right)} \\[15pt]
\boldsymbol{q}_i^{(s)} = \boldsymbol{x}_i\boldsymbol{W}_q^{(s)}\in\mathbb{R}^{d_k},\quad \boldsymbol{W}_q^{(s)}\in\mathbb{R}^{d\times d_k}\\
\boldsymbol{k}_i^{(s)} = \boldsymbol{x}_i\boldsymbol{W}_k^{(s)}\in\mathbb{R}^{d_k},\quad \boldsymbol{W}_k^{(s)}\in\mathbb{R}^{d\times d_k} \\
\boldsymbol{v}_i^{(s)} = \boldsymbol{x}_i\boldsymbol{W}_v^{(s)}\in\mathbb{R}^{d_v},\quad \boldsymbol{W}_v^{(s)}\in\mathbb{R}^{d\times d_v}
\end{gathered}
\end{equation}
简单起见,这里省略了Attention矩阵的缩放因子。实践上,常见的设置是$d_k = d_v = d / h$,对于LLAMA2-7b有$d=4096, h=32, d_k = d_v = 128$,LLAMA2-70b则是$d=8192,h=64, d_k = d_v = 128$
由于这里只考虑了主流的自回归LLM所用的Causal Attention,因此在token by token递归生成时,新预测出来的第$t+1$个token,并不会影响到已经算好的$\boldsymbol{k}_{\leq t}^{(s)} ,\boldsymbol{v}_{\leq t}^{(s)}$,因此这部分结果我们可以缓存下来供后续生成调用,避免不必要的重复计算,这就是所谓的KV Cache。
而后面的MQA、GQA、MLA,都是围绕“如何减少KV Cache同时尽可能地保证效果”这个主题发展而来的产物。
瓶颈 #
一个自然的问题是:为什么降低KV Cache的大小如此重要?
众所周知,一般情况下LLM的推理都是在GPU上进行,单张GPU的显存是有限的,一部分我们要用来存放模型的参数和前向计算的激活值,这部分依赖于模型的体量,选定模型后它就是个常数;另外一部分我们要用来存放模型的KV Cache,这部分不仅依赖于模型的体量,还依赖于模型的输入长度,也就是在推理过程中是动态增长的,当Context长度足够长时,它的大小就会占主导地位,可能超出一张卡甚至一台机(8张卡)的总显存量。
在GPU上部署模型的原则是:能一张卡部署的,就不要跨多张卡;能一台机部署的,就不要跨多台机。这是因为“卡内通信带宽 > 卡间通信带宽 > 机间通信带宽”,由于“木桶效应”,模型部署时跨的设备越多,受设备间通信带宽的的“拖累”就越大,事实上即便是单卡H100内SRAM与HBM的带宽已经达到了3TB/s,但对于Short Context来说这个速度依然还是推理的瓶颈,更不用说更慢的卡间、机间通信了。
所以,减少KV Cache的目的就是要实现在更少的设备上推理更长的Context,或者在相同的Context长度下让推理的batch size更大,从而实现更快的推理速度或者更大的吞吐总量。当然,最终目的都是为了实现更低的推理成本。
要想更详细地了解这个问题,读者可以进一步阅读《FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness》、《A guide to LLM inference and performance》、《LLM inference speed of light》等文章,这里就不继续展开了(主要是笔者水平也有限,唯恐说多错多)。
MQA #
MQA,即“Multi-Query Attention”,是减少KV Cache的一次非常朴素的尝试,首次提出自《Fast Transformer Decoding: One Write-Head is All You Need》,这已经是2019年的论文了,这也意味着早在LLM火热之前,减少KV Cache就已经是研究人员非常关注的一个课题了。
MQA的思路很简单,直接让所有Attention Head共享同一个K、V,用公式来说,就是取消MHA所有的$\boldsymbol{k},\boldsymbol{v}$的上标${}^{(s)}$:
\begin{equation}\require{cancel}
\begin{gathered}
\boldsymbol{o}_t = \left[\boldsymbol{o}_t^{(1)}, \boldsymbol{o}_t^{(2)}, \cdots, \boldsymbol{o}_t^{(h)}\right] \\[10pt]
\boldsymbol{o}_t^{(s)} = Attention\left(\boldsymbol{q}_t^{(s)}, \boldsymbol{k}_{\leq t}^{\color{#ccc}{\smash{\bcancel{(s)}}}} ,\boldsymbol{v}_{\leq t}^{\color{#ccc}{\smash{\bcancel{(s)}}}}\right)\triangleq\frac{\sum_{i\leq t}\exp\left(\boldsymbol{q}_t^{(s)} \boldsymbol{k}_i^{\color{#ccc}{\smash{\bcancel{(s)}}}}{}^{\top}\right)\boldsymbol{v}_i^{\color{#ccc}{\smash{\bcancel{(s)}}}}}{\sum_{i\leq t}\exp\left(\boldsymbol{q}_t^{(s)} \boldsymbol{k}_i^{\color{#ccc}{\smash{\bcancel{(s)}}}}{}^{\top}\right)} \\[15pt]
\boldsymbol{q}_i^{(s)} = \boldsymbol{x}_i\boldsymbol{W}_q^{(s)}\in\mathbb{R}^{d_k},\quad \boldsymbol{W}_q^{(s)}\in\mathbb{R}^{d\times d_k}\\
\boldsymbol{k}_i^{\color{#ccc}{\smash{\bcancel{(s)}}}} = \boldsymbol{x}_i\boldsymbol{W}_k^{\color{#ccc}{\smash{\bcancel{(s)}}}}\in\mathbb{R}^{d_k},\quad \boldsymbol{W}_k^{\color{#ccc}{\smash{\bcancel{(s)}}}}\in\mathbb{R}^{d\times d_k} \\
\boldsymbol{v}_i^{\color{#ccc}{\smash{\bcancel{(s)}}}} = \boldsymbol{x}_i\boldsymbol{W}_v^{\color{#ccc}{\smash{\bcancel{(s)}}}}\in\mathbb{R}^{d_v},\quad \boldsymbol{W}_v^{\color{#ccc}{\smash{\bcancel{(s)}}}}\in\mathbb{R}^{d\times d_v}
\end{gathered}
\end{equation}
使用MQA的模型包括PaLM、StarCoder、Gemini等。很明显,MQA直接将KV Cache减少到了原来的$1/h$,这是非常可观的,单从节省显存角度看已经是天花板了。
效果方面,目前看来大部分任务的损失都比较有限,且MQA的支持者相信这部分损失可以通过进一步训练来弥补回。此外,注意到MQA由于共享了K、V,将会导致Attention的参数量减少了将近一半,而为了模型总参数量的不变,通常会相应地增大FFN/GLU的规模,这也能弥补一部分效果损失。
GQA #
然而,也有人担心MQA对KV Cache的压缩太严重,以至于会影响模型的学习效率以及最终效果。为此,一个MHA与MQA之间的过渡版本GQA(Grouped-Query Attention)应运而生,出自论文《GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints》,是去年的工作。
事后看来,GQA的思想也很朴素,它就是将所有Head分为$g$个组($g$可以整除$h$),每组共享同一对K、V,用数学公式表示为
\begin{equation}
\begin{gathered}
\boldsymbol{o}_t = \left[\boldsymbol{o}_t^{(1)}, \boldsymbol{o}_t^{(2)}, \cdots, \boldsymbol{o}_t^{(h)}\right] \\[10pt]
\boldsymbol{o}_t^{(s)} = Attention\left(\boldsymbol{q}_t^{(s)}, \boldsymbol{k}_{\leq t}^{\color{red}{(\lceil sg/h\rceil)}} ,\boldsymbol{v}_{\leq t}^{\color{red}{(\lceil sg/h\rceil)}}\right)\triangleq\frac{\sum_{i\leq t}\exp\left(\boldsymbol{q}_t^{(s)} \boldsymbol{k}_i^{\color{red}{(\lceil sg/h\rceil)}}{}^{\top}\right)\boldsymbol{v}_i^{\color{red}{(\lceil sg/h\rceil)}}}{\sum_{i\leq t}\exp\left(\boldsymbol{q}_t^{(s)} \boldsymbol{k}_i^{\color{red}{(\lceil sg/h\rceil)}}{}^{\top}\right)} \\[15pt]
\boldsymbol{q}_i^{(s)} = \boldsymbol{x}_i\boldsymbol{W}_q^{(s)}\in\mathbb{R}^{d_k},\quad \boldsymbol{W}_q^{(s)}\in\mathbb{R}^{d\times d_k}\\
\boldsymbol{k}_i^{\color{red}{(\lceil sg/h\rceil)}} = \boldsymbol{x}_i\boldsymbol{W}_k^{\color{red}{(\lceil sg/h\rceil)}}\in\mathbb{R}^{d_k},\quad \boldsymbol{W}_k^{\color{red}{(\lceil sg/h\rceil)}}\in\mathbb{R}^{d\times d_k} \\
\boldsymbol{v}_i^{\color{red}{(\lceil sg/h\rceil)}} = \boldsymbol{x}_i\boldsymbol{W}_v^{\color{red}{(\lceil sg/h\rceil)}}\in\mathbb{R}^{d_v},\quad \boldsymbol{W}_v^{\color{red}{(\lceil sg/h\rceil)}}\in\mathbb{R}^{d\times d_v}
\end{gathered}
\end{equation}
这里的$\lceil\cdot\rceil$是上取整符号。GQA提供了MHA到MQA的自然过渡,当$g=h$时就是MHA,$g=1$时就是MQA,当$1 < g < h$时,它只将KV Cache压缩到$g/h$,压缩率不如MQA,但同时也提供了更大的自由度,效果上更有保证。GQA最知名的使用者,大概是Meta开源的LLAMA2-70B,以及LLAMA3全系列,此外使用GQA的模型还有TigerBot、DeepSeek-V1、StarCoder2、Yi、ChatGLM2、ChatGLM3等,相比使用MQA的模型更多(ChatGLM虽然在它的介绍中说自己是MQA,但实际是$g=2$的GQA)。
在llama2/3-70B中,GQA的$g=8$,其他用了GQA的同体量模型基本上也保持了这个设置,这并非偶然,而是同样出于推理效率的考虑。我们知道,70B这个体量的模型,如果不进行极端的量化,那么不可能部署到单卡(A100/H100 80G)上。单卡不行,那么就能单机了,一般情况下一台机可以装8张卡,刚才我们说了,Attention的每个Head实际上是独立运算然后拼接起来的,当$g=8$时,正好可以每张卡负责计算一组K、V对应的Attention Head,这样可以在尽可能保证K、V多样性的同时最大程度上减少卡间通信。
MLA #
有了MHA、MQA、GQA的铺垫,我们理解MLA(Multi-head Latent Attention)就相对容易一些了。DeepSeek-V2的技术报告里是从低秩投影的角度引入MLA的,以至于有部分读者提出“为什么LoRA提出这么久了,直到MLA才提出对KV Cache低秩分解的做法”之类的疑问。
然而,笔者认为低秩投影这个角度并不贴近本质,因为要说低秩投影的话,事实上只要我们将GQA的所有K、V叠在一起,就会发现GQA也相当于在做低秩投影:
\begin{equation}\underbrace{\left[\boldsymbol{k}_i^{(1)},\cdots,\boldsymbol{k}_i^{(g)},\boldsymbol{v}_i^{(1)},\cdots,\boldsymbol{v}_i^{(g)}\right]}_{\boldsymbol{c}_i\in\mathbb{R}^{g(d_k+d_v)}} = \boldsymbol{x}_i \underbrace{\left[\boldsymbol{W}_k^{(1)},\cdots,\boldsymbol{W}_k^{(g)},\boldsymbol{W}_v^{(1)},\cdots,\boldsymbol{W}_v^{(g)}\right]}_{\boldsymbol{W}_c\in\mathbb{R}^{d\times g(d_k+d_v)}}\end{equation}
这里我们将所有$\boldsymbol{k}_i^{(s)},\boldsymbol{v}_i^{(s)}$拼在一起记为$\boldsymbol{c}_i$,相应的投影矩阵也拼在一起记为$\boldsymbol{W}_c$,注意到一般都有$d_c = g(d_k+d_v) < d$,所以$\boldsymbol{x}_i$到$\boldsymbol{c}_i$的变换就是一个低秩投影。所以,MLA的本质改进不是低秩投影,而是低秩投影之后的工作。
Part 1 #
GQA在投影之后做了什么呢?首先它将向量对半分为两份分别作为K、V,然后每一份又均分为$g$份,每一份复制$h/g$次,以此来“凑”够$h$个Attention Head所需要的K、V。我们知道分割、复制都是简单的线性变换,所以MLA的第一个想法是将这些简单的线性变换换成一般的线性变换,以增强模型的能力:
\begin{equation}
\begin{gathered}
\boldsymbol{o}_t = \left[\boldsymbol{o}_t^{(1)}, \boldsymbol{o}_t^{(2)}, \cdots, \boldsymbol{o}_t^{(h)}\right] \\[10pt]
\boldsymbol{o}_t^{(s)} = Attention\left(\boldsymbol{q}_t^{(s)}, \boldsymbol{k}_{\leq t}^{(s)} ,\boldsymbol{v}_{\leq t}^{(s)}\right)\triangleq\frac{\sum_{i\leq t}\exp\left(\boldsymbol{q}_t^{(s)} \boldsymbol{k}_i^{(s)}{}^{\top}\right)\boldsymbol{v}_i^{(s)}}{\sum_{i\leq t}\exp\left(\boldsymbol{q}_t^{(s)} \boldsymbol{k}_i^{(s)}{}^{\top}\right)} \\[15pt]
\boldsymbol{q}_i^{(s)} = \boldsymbol{x}_i\boldsymbol{W}_q^{(s)}\in\mathbb{R}^{d_k},\quad \boldsymbol{W}_q^{(s)}\in\mathbb{R}^{d\times d_k}\\
\boldsymbol{k}_i^{(s)} = \boldsymbol{c}_i\boldsymbol{W}_k^{(s)}\in\mathbb{R}^{d_k},\quad \boldsymbol{W}_k^{(s)}\in\mathbb{R}^{d_c\times d_k} \\
\boldsymbol{v}_i^{(s)} = \boldsymbol{c}_i\boldsymbol{W}_v^{(s)}\in\mathbb{R}^{d_v},\quad \boldsymbol{W}_v^{(s)}\in\mathbb{R}^{d_c\times d_v} \\[10pt]
\boldsymbol{c}_i = \boldsymbol{x}_i \boldsymbol{W}_c\in\mathbb{R}^{d_c},\quad \boldsymbol{W}_c\in\mathbb{R}^{d\times d_c}
\end{gathered}
\end{equation}
然而,理论上这样是能增加模型能力,但别忘了GQA的主要目的是减少KV Cache,出于节省计算和通信成本的考虑,我们一般会缓存的是投影后的$\boldsymbol{k}_i, \boldsymbol{v}_i$而不是投影前的$\boldsymbol{c}_i$或$\boldsymbol{x}_i$,而MLA的这个做法,通过不同的投影矩阵再次让所有的K、V Head都变得各不相同,那么KV Cache的大小就恢复成跟MHA一样大了,违背了GQA的初衷。
对此,MLA发现,我们可以结合Dot-Attention的具体形式,通过一个简单但不失巧妙的恒等变换来规避这个问题。首先,在训练阶段还是照常进行,此时优化空间不大;然后,在推理阶段,我们利用
\begin{equation}\boldsymbol{q}_t^{(s)} \boldsymbol{k}_i^{(s)}{}^{\top} = \left(\boldsymbol{x}_t\boldsymbol{W}_q^{(s)}\right) \left(\boldsymbol{c}_i\boldsymbol{W}_k^{(s)}\right){}^{\top} = \boldsymbol{x}_t\left(\boldsymbol{W}_q^{(s)}\boldsymbol{W}_k^{(s)}{}^{\top}\right)\boldsymbol{c}_i^{\top} \end{equation}
这意味着推理阶段,我们可以将$\boldsymbol{W}_q^{(s)}\boldsymbol{W}_k^{(s)}{}^{\top}$合并起来作为Q的投影矩阵,那么$\boldsymbol{c}_i$则取代了原本的$\boldsymbol{k}_i$,同理,在$\boldsymbol{o}_t$后面我们还有一个投影矩阵,于是$\boldsymbol{v}_i^{(s)} = \boldsymbol{c}_i\boldsymbol{W}_v^{(s)}$的$\boldsymbol{W}_v^{(s)}$也可以吸收到后面的投影矩阵中去,于是等效地$\boldsymbol{v}_i$也可以用$\boldsymbol{c}_i$代替,也就是说此时KV Cache只需要存下所有的$\boldsymbol{c}_i$就行,而不至于存下所有的$\boldsymbol{k}_i^{(s)}$、$\boldsymbol{v}_i^{(s)}$。注意到$\boldsymbol{c}_i$跟${}^{(s)}$无关,也就是说是所有头共享的,即MLA在推理阶段它可以恒等变换为一个MQA。
再次强调,本文的主题是一直都是减少KV Cache,那到目前为止,MLA做到了什么呢?答案是通过不同的投影矩阵来增强了GQA的能力,并且推理时可以保持同样大小的KV Cache。那么反过来,如果我们只需要跟GQA相近的能力,那么是不是就可以再次减少KV Cache了?换言之,$d_c$没必要取$g(d_k+d_v)$,而是取更小的值(DeepSeek-V2取了512),从而进一步压缩KV Cache,这就是MLA的核心思想。
(注:这里有一个细节,就是$\boldsymbol{W}_q^{(s)}\boldsymbol{W}_k^{(s)}{}^{\top}$合并成一个矩阵的恒等变换,理论上只有在无限精度下才成立,实际上如果我们使用单精度尤其是BF16的话,经过变换后的精度损失往往还是挺明显的,经过多层累积后可能放大到比较可观的程度,这里可能要根据实际误差看要不要做一些后处理。)
Part 2 #
一切似乎都很完美,看上去一个又好又省的理想设计就要出炉了。不过别急,当我们再深入思考一下就会发现,到目前为止的MLA有一个难以绕开的缺陷——不兼容RoPE(旋转位置编码)。
刚才我们说了,MLA之所以能保持跟GQA一样大小的KV Cache,其关键一步是“将$\boldsymbol{W}_q^{(s)}\boldsymbol{W}_k^{(s)}{}^{\top}$合并成一个(跟位置无关的)矩阵作为Q的投影矩阵”,但如果加了RoPE的话,这一步就无法实现了。这是因为RoPE是一个跟位置相关的、$d_k\times d_k$的分块对角矩阵$\boldsymbol{\mathcal{R}}_m$,满足$\boldsymbol{\mathcal{R}}_m\boldsymbol{\mathcal{R}}_n^{\top}=\boldsymbol{\mathcal{R}}_{m-n}$,MLA加入RoPE之后会让$\boldsymbol{W}_q^{(s)}\boldsymbol{W}_k^{(s)}{}^{\top}$之间多插入了一项$\boldsymbol{\mathcal{R}}_{t-i}$:
\begin{equation}
\boldsymbol{q}_i^{(s)} = \boldsymbol{x}_i\boldsymbol{W}_q^{(s)}\color{#3ce2f7}{\boldsymbol{\mathcal{R}}_i}\quad,\quad\boldsymbol{k}_i^{(s)} = \boldsymbol{c}_i\boldsymbol{W}_k^{(s)}\color{#3ce2f7}{\boldsymbol{\mathcal{R}}_i} \\
\boldsymbol{q}_t^{(s)} \boldsymbol{k}_i^{(s)}{}^{\top} = \left(\boldsymbol{x}_t\boldsymbol{W}_q^{(s)}\color{#3ce2f7}{\boldsymbol{\mathcal{R}}_t}\right) \left(\boldsymbol{c}_i\boldsymbol{W}_k^{(s)}\color{#3ce2f7}{\boldsymbol{\mathcal{R}}_i}\right){}^{\top} = \boldsymbol{x}_t\left(\boldsymbol{W}_q^{(s)}\color{#3ce2f7}{\boldsymbol{\mathcal{R}}_{t-i}}\boldsymbol{W}_k^{(s)}{}^{\top}\right)\boldsymbol{c}_i^{\top} \end{equation}
这里的$\boldsymbol{W}_q^{(s)}\color{#3ce2f7}{\boldsymbol{\mathcal{R}}_{t-i}}\boldsymbol{W}_k^{(s)}{}^{\top}$就无法合并为一个固定的投影矩阵了(跟位置差$t-i$相关),从而MLA的想法无法结合RoPE实现。
前段时间,笔者也很荣幸跟DeepSeek团队讨论过这个问题,但这个问题可以说非常本质,所以当时笔者实际上也没能提出什么有效的建议。最简单的方式是放弃RoPE,换用其他基于Attention Bias的位置编码,如ALIBI,但DeepSeek的实验显示它明显不如RoPE(注意,MLA不是不能加RoPE,而是加了RoPE之后无法用恒等变换技巧来减少KV Cache),笔者也提议过换Sandwich,它不像ALIBI单调衰减到负无穷,估计效果会好些,但感觉是治标不治本。还有一个折中的办法是将$\boldsymbol{q}_i$的输入也改为$\boldsymbol{c}_i$,然后RoPE加在$\boldsymbol{c}_i$之后,即
\begin{equation}\boldsymbol{q}_i^{(s)} = \boldsymbol{c}_i\color{#3ce2f7}{\boldsymbol{\mathcal{R}}_i}\boldsymbol{W}_q^{(s)},\quad\boldsymbol{k}_i^{(s)} = \boldsymbol{c}_i\color{#3ce2f7}{\boldsymbol{\mathcal{R}}_i}\boldsymbol{W}_k^{(s)}\end{equation}
这样$\boldsymbol{\mathcal{R}}_i$就可以吸收到$\boldsymbol{c}_i$中去,但这样就没有$\boldsymbol{\mathcal{R}}_m\boldsymbol{\mathcal{R}}_n^{\top}=\boldsymbol{\mathcal{R}}_{m-n}$的运算了,此时的RoPE不再是通过绝对位置实现相对位置,而单纯是在Q、K上加绝对位置,让模型自己想办法提炼相对位置信息。
最后发布的MLA,采取了一种混合的方法——每个Attention Head的Q、K新增$d_r$个维度用来添加RoPE,其中K新增的维度每个Head共享:
\begin{equation}
\begin{gathered}
\boldsymbol{o}_t = \left[\boldsymbol{o}_t^{(1)}, \boldsymbol{o}_t^{(2)}, \cdots, \boldsymbol{o}_t^{(h)}\right] \\[10pt]
\boldsymbol{o}_t^{(s)} = Attention\left(\boldsymbol{q}_t^{(s)}, \boldsymbol{k}_{\leq t}^{(s)} ,\boldsymbol{v}_{\leq t}^{(s)}\right)\triangleq\frac{\sum_{i\leq t}\exp\left(\boldsymbol{q}_t^{(s)} \boldsymbol{k}_i^{(s)}{}^{\top}\right)\boldsymbol{v}_i^{(s)}}{\sum_{i\leq t}\exp\left(\boldsymbol{q}_t^{(s)} \boldsymbol{k}_i^{(s)}{}^{\top}\right)} \\[15pt]
\boldsymbol{q}_i^{(s)} = \left[\boldsymbol{x}_i\boldsymbol{W}_{qc}^{(s)}, \boldsymbol{x}_i\boldsymbol{W}_{qr}^{(s)}\color{#3ce2f7}{\boldsymbol{\mathcal{R}}_i}\right]\in\mathbb{R}^{d_k + d_r},\quad \boldsymbol{W}_{qc}^{(s)}\in\mathbb{R}^{d\times d_k},\boldsymbol{W}_{qr}^{(s)}\in\mathbb{R}^{d\times d_r}\\
\boldsymbol{k}_i^{(s)} = \left[\boldsymbol{c}_i\boldsymbol{W}_{kc}^{(s)}, \boldsymbol{x}_i\boldsymbol{W}_{kr}^{\color{#ccc}{\smash{\bcancel{(s)}}}}\color{#3ce2f7}{\boldsymbol{\mathcal{R}}_i}\right]\in\mathbb{R}^{d_k+d_r},\quad \boldsymbol{W}_{kc}^{(s)}\in\mathbb{R}^{d_c\times d_k}, \boldsymbol{W}_{kr}^{\color{#ccc}{\smash{\bcancel{(s)}}}}\in\mathbb{R}^{d\times d_r} \\
\boldsymbol{v}_i^{(s)} = \boldsymbol{c}_i\boldsymbol{W}_v^{(s)}\in\mathbb{R}^{d_v},\quad \boldsymbol{W}_v^{(s)}\in\mathbb{R}^{d_c\times d_v} \\[10pt]
\boldsymbol{c}_i = \boldsymbol{x}_i \boldsymbol{W}_c\in\mathbb{R}^{d_c},\quad \boldsymbol{W}_c\in\mathbb{R}^{d\times d_c}
\end{gathered}
\end{equation}
这样一来,没有RoPE的维度就可以重复“Part 1”的操作,在推理时KV Cache只需要存$\boldsymbol{c}_i$,新增的带RoPE的维度就可以用来补充位置信息,并且由于所有Head共享,所以也就只有在K Cache这里增加了$d_r$个维度,原论文取了$d_r = d_k / 2 = 64$,相比原本的$d_c=512$,增加的幅度不大。
Part 3 #
最后有一个细节,就是MLA的最终版本,还将Q的输入也改为了低秩投影形式,这与减少KV Cache无关,主要是为了减少训练期间参数量和相应的梯度(原论文说的是激活值,个人表示不大理解)所占的显存:
\begin{equation}
\begin{gathered}
\boldsymbol{o}_t = \left[\boldsymbol{o}_t^{(1)}, \boldsymbol{o}_t^{(2)}, \cdots, \boldsymbol{o}_t^{(h)}\right] \\[10pt]
\boldsymbol{o}_t^{(s)} = Attention\left(\boldsymbol{q}_t^{(s)}, \boldsymbol{k}_{\leq t}^{(s)} ,\boldsymbol{v}_{\leq t}^{(s)}\right)\triangleq\frac{\sum_{i\leq t}\exp\left(\boldsymbol{q}_t^{(s)} \boldsymbol{k}_i^{(s)}{}^{\top}\right)\boldsymbol{v}_i^{(s)}}{\sum_{i\leq t}\exp\left(\boldsymbol{q}_t^{(s)} \boldsymbol{k}_i^{(s)}{}^{\top}\right)} \\[15pt]
\boldsymbol{q}_i^{(s)} = \left[\boldsymbol{c}_i'\boldsymbol{W}_{qc}^{(s)}, \boldsymbol{c}_i'\boldsymbol{W}_{qr}^{(s)}\color{#3ce2f7}{\boldsymbol{\mathcal{R}}_i}\right]\in\mathbb{R}^{d_k + d_r},\quad \boldsymbol{W}_{qc}^{(s)}\in\mathbb{R}^{d_c'\times d_k},\boldsymbol{W}_{qr}^{(s)}\in\mathbb{R}^{d_c'\times d_r}\\
\boldsymbol{k}_i^{(s)} = \left[\boldsymbol{c}_i\boldsymbol{W}_{kc}^{(s)}, \boldsymbol{x}_i\boldsymbol{W}_{kr}^{\color{#ccc}{\smash{\bcancel{(s)}}}}\color{#3ce2f7}{\boldsymbol{\mathcal{R}}_i}\right]\in\mathbb{R}^{d_k+d_r},\quad \boldsymbol{W}_{kc}^{(s)}\in\mathbb{R}^{d_c\times d_k}, \boldsymbol{W}_{kr}^{\color{#ccc}{\smash{\bcancel{(s)}}}}\in\mathbb{R}^{d\times d_r} \\
\boldsymbol{v}_i^{(s)} = \boldsymbol{c}_i\boldsymbol{W}_v^{(s)}\in\mathbb{R}^{d_v},\quad \boldsymbol{W}_v^{(s)}\in\mathbb{R}^{d_c\times d_v} \\[10pt]
\boldsymbol{c}_i' = \boldsymbol{x}_i \boldsymbol{W}_c'\in\mathbb{R}^{d_c'},\quad \boldsymbol{W}_c'\in\mathbb{R}^{d\times d_c'} \\
\boldsymbol{c}_i = \boldsymbol{x}_i \boldsymbol{W}_c\in\mathbb{R}^{d_c},\quad \boldsymbol{W}_c\in\mathbb{R}^{d\times d_c} \\
\end{gathered}
\end{equation}
注意$\boldsymbol{k}_i^{(s)}$中的第二项,带RoPE的部分,其输入还是$\boldsymbol{x}_i$而不是$\boldsymbol{c}_i$,这里保持了原论文的设置,不是笔误,$d_c'$原论文的取值是1536,跟$d_c=512$不同。同时,我们把带RoPE的MHA放在下面,方便大家对比:
\begin{equation}
\begin{gathered}
\boldsymbol{o}_t = \left[\boldsymbol{o}_t^{(1)}, \boldsymbol{o}_t^{(2)}, \cdots, \boldsymbol{o}_t^{(h)}\right] \\[10pt]
\boldsymbol{o}_t^{(s)} = Attention\left(\boldsymbol{q}_t^{(s)}, \boldsymbol{k}_{\leq t}^{(s)} ,\boldsymbol{v}_{\leq t}^{(s)}\right)\triangleq\frac{\sum_{i\leq t}\exp\left(\boldsymbol{q}_t^{(s)} \boldsymbol{k}_i^{(s)}{}^{\top}\right)\boldsymbol{v}_i^{(s)}}{\sum_{i\leq t}\exp\left(\boldsymbol{q}_t^{(s)} \boldsymbol{k}_i^{(s)}{}^{\top}\right)} \\[15pt]
\boldsymbol{q}_i^{(s)} = \boldsymbol{x}_i\boldsymbol{W}_q^{(s)}\color{#3ce2f7}{\boldsymbol{\mathcal{R}}_i}\in\mathbb{R}^{d_k},\quad \boldsymbol{W}_q^{(s)}\in\mathbb{R}^{d\times d_k}\\
\boldsymbol{k}_i^{(s)} = \boldsymbol{x}_i\boldsymbol{W}_k^{(s)}\color{#3ce2f7}{\boldsymbol{\mathcal{R}}_i}\in\mathbb{R}^{d_k},\quad \boldsymbol{W}_k^{(s)}\in\mathbb{R}^{d\times d_k} \\
\boldsymbol{v}_i^{(s)} = \boldsymbol{x}_i\boldsymbol{W}_v^{(s)}\in\mathbb{R}^{d_v},\quad \boldsymbol{W}_v^{(s)}\in\mathbb{R}^{d\times d_v}
\end{gathered}
\end{equation}
可以发现,其实在训练阶段,除了多了一步低秩投影以及只在部分维度加RoPE外,MLA与Q、K的Head Size由$d_k$换成$d_k + d_r$的MHA基本无异。
推理阶段的MLA则改为
\begin{equation}
\begin{gathered}
\boldsymbol{o}_t = \left[\boldsymbol{o}_t^{(1)}\boldsymbol{W}_v^{(1)}, \boldsymbol{o}_t^{(2)}\boldsymbol{W}_v^{(2)}, \cdots, \boldsymbol{o}_t^{(h)}\boldsymbol{W}_v^{(h)}\right] \\[10pt]
\boldsymbol{o}_t^{(s)} = Attention\left(\boldsymbol{q}_t^{(s)}, \boldsymbol{k}_{\leq t}^{(s)} ,\boldsymbol{c}_{\leq t}\right)\triangleq\frac{\sum_{i\leq t}\exp\left(\boldsymbol{q}_t^{(s)} \boldsymbol{k}_i^{(s)}{}^{\top}\right)\boldsymbol{c}_i}{\sum_{i\leq t}\exp\left(\boldsymbol{q}_t^{(s)} \boldsymbol{k}_i^{(s)}{}^{\top}\right)} \\[15pt]
\boldsymbol{q}_i^{(s)} = \left[\boldsymbol{c}_i'\boldsymbol{W}_{qc}^{(s)}\boldsymbol{W}_{kc}^{(s)}{}^{\top}, \boldsymbol{c}_i'\boldsymbol{W}_{qr}^{(s)}\color{#3ce2f7}{\boldsymbol{\mathcal{R}}_i}\right]\in\mathbb{R}^{d_c + d_r}\\
\boldsymbol{k}_i^{(s)} = \left[\boldsymbol{c}_i, \boldsymbol{x}_i\boldsymbol{W}_{kr}^{\color{#ccc}{\smash{\bcancel{(s)}}}}\color{#3ce2f7}{\boldsymbol{\mathcal{R}}_i}\right]\in\mathbb{R}^{d_c+d_r}\\
\boldsymbol{W}_{qc}^{(s)}\in\mathbb{R}^{d_c'\times d_k},\boldsymbol{W}_{kc}^{(s)}\in\mathbb{R}^{d_c\times d_k},\boldsymbol{W}_{qr}^{(s)}\in\mathbb{R}^{d_c'\times d_r},\boldsymbol{W}_{kr}^{\color{#ccc}{\smash{\bcancel{(s)}}}}\in\mathbb{R}^{d\times d_r} \\[10pt]
\boldsymbol{c}_i' = \boldsymbol{x}_i \boldsymbol{W}_c'\in\mathbb{R}^{d_c'},\quad \boldsymbol{W}_c'\in\mathbb{R}^{d\times d_c'} \\
\boldsymbol{c}_i = \boldsymbol{x}_i \boldsymbol{W}_c\in\mathbb{R}^{d_c},\quad \boldsymbol{W}_c\in\mathbb{R}^{d\times d_c} \\
\end{gathered}
\end{equation}
此时Q、K的Head Size变成了$d_c + d_r$,V的Head Size 则变成了$d_c$,按照原论文的设置,这是$d_k$、$d_v$的4倍。所以实际上MLA在推理阶段做的这个转换,虽然能有效减少KV Cache,但其推理的计算量是增加的。
那为什么还能提高推理效率呢?这又回到“瓶颈”一节所讨论的问题了,我们可以将LLM的推理分两部分:第一个Token的生成(Prefill)和后续每个Token的生成(Generation),Prefill阶段涉及到对输入所有Token的并行计算,然后把对应的KV Cache存下来,这部分对于计算、带宽和显存都是瓶颈,MLA虽然增大了计算量,但KV Cache的减少也降低了显存和带宽的压力,大家半斤八两;但是Generation阶段由于每步只计算一个Token,实际上它更多的是带宽瓶颈和显存瓶颈,因此MLA的引入理论上能明显提高Generation的速度。
还有一个细节充分体现了这个特性。一般的LLM架构参数满足$h \times d_k = d$,即num_heads * head_size = hidden_size,但DeepSeek-V2不一样,它$d_k=128,d=5120$,但$h=128$,是一般设置的3倍!这是因为MLA的KV Cache大小跟$h$无关,增大$h$只会增加计算量和提升模型能力,但不会增加KV Cache,所以不会带来速度瓶颈。
小结 #
本文简单概述了多头注意力的演变历程,特别是从MHA向MQA、GQA,最终到MLA的变化理念,最后详细展开了对MLA的介绍。在本文中,MLA被视为GQA的一般化,它用投影矩阵的方式替代了GQA的分割、重复,并引入了一个恒等变换技巧来可以进一步压缩KV Cache,同时采用了一种混合方法来兼容RoPE。总的来说,MLA称得上是一种非常实用的注意力变体。
转载到请包括本文地址:https://kexue.fm/archives/10091
更详细的转载事宜请参考:《科学空间FAQ》
如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。
如果您觉得本文还不错,欢迎分享/打赏本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!
如果您需要引用本文,请参考:
苏剑林. (May. 13, 2024). 《缓存与效果的极限拉扯:从MHA、MQA、GQA到MLA 》[Blog post]. Retrieved from https://kexue.fm/archives/10091
@online{kexuefm-10091,
title={缓存与效果的极限拉扯:从MHA、MQA、GQA到MLA},
author={苏剑林},
year={2024},
month={May},
url={\url{https://kexue.fm/archives/10091}},
}
May 13th, 2024
纠个错,10式维度应该是: $W^{\color{grey}{\bcancel{(s)}}}_{kr}∈ℝ^{d x d_r}$
另外不是那么理解“Q的输入也改为了低秩投影形式,这与减少KV Cache无关,主要是为了减少训练期间激活值所占的显存”
原本 MHA 不做低秩投影,为了计算应该只需要保存 $q_{i}^{(s)}∈ℝ^{d_k}$(flash attention 的 activation),但是 MLA 需要保存两个 $c_{i}^{'}∈ℝ^{d^{'}}$ (query up projection 的 activation)以及 $q_{i}^{(s)}∈ℝ^{d_k}$(flash attention 的 activation),反而是变多了呀?
而且 MLA 的 head 的数量还明显多于普通的 MHA,以 DeepSeek-V2 为例,如果说 hidden_size=5120,传统的 MHA 的 attention heads 只有 40 个,但是论文里足足有 128 个
1、阅读得非常仔细,感谢指出,已经更正;
2、这里其实我也不大理解,原来的表述是直接重复原论文的表述,想了想我还是按照我自己的理解写吧,已经修改。
PS:我向deepseek团队请教过,他们说确实是能省激活值,但怎么实现不方便透露...
我回去看了 Infrastructures 那节,算是搞懂了,应该就是对这部分进行了 recompute,就多算点,从而减少 activation
感谢指点!
128 header是想要足够稀疏的MoE,更少激活,为此专门定制了路由方法
你是指:因为他们有 expert 并行 和 tensor 并行结合吗?tensor parallel world和 expert parallel world 重叠?还是说其他意思?
因为我理解 DeepSeek-V2 的 MoE 只是对 FFN,跟 Attention 没有直接关系?
他们tech report里明确写了没开tp
May 13th, 2024
不保存q的
backward 的时候,需要有 q 才能计算梯度呀,否则就是 checkpoint 重新计算 q 才行,但是这样计算效率就变差了
May 13th, 2024
"这里的W^{(s)}_qR_{t−i}W^{(s)T}_k就无法合并为一个固定的投影矩阵了(跟位置差t−i相关),从而MLA的想法无法结合RoPE实现。"
请问可以只改变计算顺序,但实际并不真的 materialize 这个结果吗?
按照我的理解,你这表达的就是Generation阶段动态地给KV Cache注入位置信息,而不是缓存加入了位置信息后的结果。这样理论上肯定没问题,但实践上可能效率不足。
嗯,是这个意思,更新kvcache确实不如mla目前实现经济,只是觉得这个kvcache是个low rank的,牺牲点效率保全rope这样
主要问题同@苏剑林|comment-24323
May 13th, 2024
请问把Wq和Wk两个矩阵合并起来是因为计算效率更高吗,如果不合并可以直接加rope是不是更方便,依旧只需缓存c,只是多了一个C->k,v的映射。
你的意思是,缓存$\boldsymbol{c}$,然后推理阶段实时去投影,然后给K加上RoPE?这样访存效率会非常低。(试想一下,普通的MHA,只是简单地读取KV Cache,就已经是瓶颈,更不用说读取后还要投影还要加上RoPE)
明白了,谢谢苏神
May 13th, 2024
最简单的方式是放弃RoPE,换用其他基于Attention Bias的位置编码,如ALIBI,但DeepSeek的实验显示它明显不如RoPE。
但是ALIBI的文章好像说ALIBI比RoPE好?这是为什么?
即便是ALIBI的文章中,我也没有找到ALIBI比RoPE的实验结果。ALIBI主要强调的是自己的长度外推效果比RoPE好(即便这一点我也表示怀疑),但目前主流的LLM,似乎都不打算靠外推来实现Long Context,而是推理多长就训多长,所以ALIBI的长度外推效果即便为真,也没有优势了。此外,ALIBI实际上严重牺牲了长距离的依赖,所以在Long Context上表现比较糟糕。
苏神,这里“目前主流的LLM,似乎都不打算靠外推来实现Long Context,而是推理多长就训多长”的观点有具体文章论述吗? 还有,我理解这里是使用Long Context微调吧,pretrain的话8K以上开销就很大了。
是微调的意思,并不是一直都pretrain那么长(也没有那么多这么长的数据)
May 13th, 2024
请问12式中推理为什么可以用C来替代V,按照训练的形式,这里不是应该是由C计算得来的V嘛
理解了,是并入输出的投影矩阵中了
好的,点赞!
May 13th, 2024
两个问题:
1、标准RoPE是加在W之后的,8式方案,放前面的话理论和实践有没有过评估哇?
2、10式下面一行提到“不是笔误”部分,其实我前几天在群里也提到了,推测这样有什么考虑么?
1、暂无实验,不过直觉上应该不会有什么问题,给模型绝对位置,让模型自己去学相对位置罢了,我不大相信位置编码会成为模型scale的瓶颈;
2、我们内部讨论过并且也向deepseek团队请教过,这个答案貌似都倾向于没有什么特殊考虑。
May 14th, 2024
苏神好,我问一个与本问题无关的问题:你的博客的每篇文章的最后,是否可以有一个导航栏,方便移动到当前文章的前一篇和后一篇?可能是我没有发现这个功能
每篇文章的最后是引用参考,再下方是分类和标签,然后下方就是你想要的。
May 15th, 2024
MHA中计算softmax得分$o(s)_t$ 这个公式写错了吧,分子的累加和应该写在外面?
暂时没有发现错误,具体一点?
May 15th, 2024
这篇技术报告确实好多地方没说清楚,说节省激活值也不说为什么,让我还疑惑了好久哈哈哈