20 Sep

正十七边形的尺规作图存在之证明

在网上查找到的,好像有三个不同的版本,全部摘录在此。

关于正17边形的尺规作图方法,请看:
http://kexue.fm/article.asp?id=104

本文章只是证明它的存在(就是求出$\cos ({2\pi}/{17})$)。

点击阅读全文...

20 Sep

一道从小学到高中都可能考到的题目

这是一道很多时候都会考到的题目:
比较$n^{n+1}$与$(n+1)^n$的大小(其中n非负)。

在小学我们会使用直接计算;
在初中我们会从一些例子找规律;
在高中我们就会直接去证明了。

点击阅读全文...

12 Sep

微积分学习(二):导数

自从上次写了关于微积分中的极限学习后,就很长的时间没有与大家探讨微积分的学习了(估计有20多天了吧)。启事,我自己也是从今年的9月下旬才开始系统地学习微积分的,到现在也就一个月的时间吧。学习的内容有:集合、函数、极限、导数、微分、积分。不过都是一元微积分,多元的微积分正在紧张地进修中......

现在不妨和大家探讨一下关于微积分中的最基本内容——“导数”的学习。

其实,用最简单的说法,如果存在函数$f(x)$,那么它的导数(一阶导数)为
$$\lim_{\Delta x->0} f'(x)=\frac{f(x+\Delta x)-f(x)}{\Delta x}$$

点击阅读全文...

6 Sep

高三学生写的数学情书(佩服)

这是一封强悍的“数学情书”,里面的内容可谓“铁证如山”,大家不妨看一下,人士下这个强悍的“才子”。略作修改,纯属恶搞。

术子
还生我的气吗?

我总是喜欢叫你术子,知道为什么吗?因为你的名字和我最喜欢的数学有一个字发音相同,而且在小学的时候,数学就叫做算术

点击阅读全文...

6 Sep

四次方程的根式求解(通俗版)

前些时间发表了三次方程的一般求解 ,并通过了维基百科链接到了这里来,想不到带来了很多的人气,看到大家还是比较需要这方面的资料的。在此之前曾经承诺过会把4次方程的求根公式也写出来,现在终于有时间了,就此一写,希望能够为大家带来帮助。

$$ax^4+bx^3+cx^2+dx+e=0(a!=0)$$

仍然是这两句话:网上的资料中,一是缺乏描述专业数学公式的相关程序(很多网站都是这样);二是语言过于专业,不能大众化(如维基百科)。如果一开始我就去看wiki,那么我保证我到现在还不能弄懂。

点击阅读全文...

28 Aug

正十七边形的尺规作图

为何正17边形能够用尺规作出来?要如何作?先别急,请看下面的解释:

一个正质数多边形可以用标尺作图的充分和必要条件是,该多边形的边数必定是一个费马质数。换句话说,只有正三边形、正五边形、正十七边形、正257边形和正63357边形可以用尺规作出来,其它的正质数多边形就不可以了。(除非我们再发现另一个费马质数。)

正17边形的尺规作法是高斯在1796年得出的,他也因此决心要成为数学家。关于费马质数,是指形如$2^{2^n}+1$的质数,一开始费马认为对于所有的n,这种形式的数都是质数。可是这似乎是上天的玩笑,目前只发现了当n=0,1,2,3,4的时候$2^{2^n}+1$是质数,其余都是合数。

点击阅读全文...

24 Aug

几何-算术均值不等式的一般证明

本证明是站长经过很长时间独立研究得出,望转载者要注明原作者和出处,否则定追究版权责任! (公式很多,推荐使用火狐浏览器)

关于这个不等式由来已久,从$\frac{a+b}{2} \geq \sqrt{ab}$开始,人们逐渐地发现,只要$a_1,a_2,...,a_n \geq 0$,那么就一定会有$\frac{a_1+a_2+...+a_n}{n} \geq \sqrt[n]{a_1 a_2...a_n}$。对于比较小的n,人们已经可以证明上式成立,但是,一般形式的证明则是近年来的事情。

我自己很早就接触到了这个不等式(好像是3年前,我读六年级),从那个时候开始,我就一直寻找这个不等式的证明,但是除了n=2的情况外,其余一直未果。直到三个月前的一节数学课,在发愣之余就想出来了(^_^)。一开始证明了n=3的情况,然后就势如破竹,证明了对于任何的n,这条不等式都成立。

点击阅读全文...

24 Aug

关于a,b的极限证明题目

证明下列极限:
$$\lim_{x \to 0}\left(\frac{a^x+b^x}{2}\right)^{3/x}=ab\sqrt{ab}$$

解:
这是我认为比较难的极限题目之一,由麦克劳林公式可以推出:
$$a^x=1+x \ln a+\frac{x^2 \ln^2 a}{2!}+\frac{x^3 \ln^3 a}{3!}+...$$

点击阅读全文...