25 Apr

傅里叶变换:只需要异想天开?

在对数学或物理进行事后分析,往往会发现一些奇怪的现象,也有可能得到一些更为深刻有趣的结果。比如本文所要谈及的傅里叶变换,可以由一种“异想天开”的思路得来。

洛朗展式

我们知道,在原点处形态良好的函数,可以展开为泰勒级数
$$f(x)=\sum_{n=0}^{\infty}a_n x^n$$
我们发现,上面的幂都是正的,为什么不能包含$x$的负数次幂呢?比如$\frac{\sin z}{z^2}$展开为
$$\frac{1}{z}-\frac{z}{6}+\frac{z^3}{120}\dots$$
显然也是一件合理的事情。于是,结合复变函数,我们得到解析函数的洛朗展式
$$f(z)=\sum_{n=-\infty}^{+\infty}a_n z^n$$
这是函数的双边展开。其中

点击阅读全文...

26 Dec

小论文《欧拉数学在数列级数的妙用》

这是我的数学分析期末小论文,是之前的文章《[欧拉数学]找出严谨的答案》的补充与完善,也是我自己的Latex写作练习。文章举了一些例子来说明通过离散数学连续化为离散命题的证明带来思路。

----------------------

通常我们都认为具体的级数是比较容易分析的,而抽象级数则比较难把握思路。抽象级数题目的种类太多,为了熟练解题通常都需要记忆很多形式,而且这些形式通常都很单一,缺乏可拓展性。而运用“欧拉数学”,可以为我们解决数项级数题提供一个独特的、实用性广的思路。

点击阅读全文...

17 May

正项级数敛散性最有力的判别法?

在学习正项级数的时候,我们的数学分析教材提供了各种判别法,比如积分判别法、比较判别法,并由此衍生出了根植法、比值法等,在最后提供了一个比较精细的“Raabe判别法”。这些方法的精度(强度)各不相同,一般认为“Raabe判别法”的应用范围最广的。但是在我看来,基于p级数的比较判别法已经可以用于所有题目了,它才是最强的方法。

p级数就是我们熟悉的
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

通过积分判别法可以得到当p>1时该级数收敛,反之发散。虽然我不能证明,但是我觉得以下结论是成立的:

若正项级数$\sum_{n=1}^{\infty} a_n$收敛,则总可以找到一个常数A以及一个大于1的常数p,使每项都有$a_n < \frac{A}{n^p}$。

点击阅读全文...

13 Mar

单摆运动级数解:初试同伦分析

开始之初,我偶然在图书馆看到了一本名为《超越摄动:同伦分析方法导论》,里边介绍了一种求微分方程近似解的新方法,关键是里边的内容看起来并不是十分难懂,因此我饶有兴致地借来研究了。果然,这是一种非常有趣的方法,在某种意义上来说,还是非常简洁的方法。这解决了我一直以来想要研究的问题:用傅里叶级数来近似描述单摆运动的近似解。当然,它带给我的冲击不仅仅是这些。为了得出周期解,我又同时研究了各种摄动方法的技巧,如消除长期项的PL(Poincaré–Lindstedt)方法。这同时增加了我对各种近似解析方法的了解。从开学到现在快三周的时间,我一直都在研究这些问题。

点击阅读全文...

16 Oct

以自然数幂为系数的幂级数

$\sum_{i=0}^{\infty} a_i x^i=a_0+a_1 x+a_2 x^2+a_3 x^3+...$
最近为了数学竞赛,我研究了有关数列和排列组合的相关问题。由于我讨厌为某个问题而设计专门的技巧,所以我偏爱通用的方法,哪怕过程相对麻烦。因此,我对数学归纳法(递推法)和生成函数法情有独钟。前者只需要列出问题的递归关系,而不用具体分析,最终把问题转移到解函数方程上来。后者则巧妙地把数列${a_n}$与幂级数$\sum_{i=0}^{\infty} a_i x^i$一一对应,巧妙地通过代数运算或微积分运算等得到结果。这里我们不用考虑该级数的敛散性,只需要知道它对应着哪一个“母函数”(母函数展开泰勒级数后得到了级数$\sum_{i=0}^{\infty} a_i x^i$)。显然,这两种方法的最终,都是把问题归结为代数问题。

点击阅读全文...

10 Sep

级数求和——近似的无穷级数

级数是数学的一门很具有实用性的分支,而级数求和则是级数研究中的核心内容之一。很多问题都可以表示成一个级数的和或积,也就是$\sum_{i=1}^n f(i)$或者是$\prod_{i=1}^n f(i)$类型的运算。其中,$ln(\prod_{i=1}^n f(i))=\sum_{i=1}^n ln(f(i))=k$,因此$\prod_{i=1}^n f(i)=e^k$,也就是说,级数求积也可以变为级数求和来计算,换言之我们可以把精力放到级数求和上去。

为了解决一般的级数求和问题,我们考虑以下方程的解:
$$f(x+\epsilon)-f(x)=g(x)\tag{1}$$其中g(x)是已知的以x为变量的函数式,$\epsilon $是常数,初始条件是$f(k)=b$,要求f(x)的表达式。

点击阅读全文...

4 Apr

数值方法解方程之终极算法

呵呵,做了一回标题党,可能说得夸张了一点。说是“终极算法”,主要是因为它可以任意提高精度、而且几乎可以应付任何非线性方程(至少理论上是这样),提高精度是已知的迭代式上添加一些项,而不是完全改变迭代式的形式,当然在提高精度的同时,计算量也会随之增大。其理论基础依旧是泰勒级数。

我们考虑方程$x=f(y)$,已知y求x是很容易的,但是已知x求y并不容易。我们考虑把y在$(x_0,y_0)$处展开成x的的泰勒级数。关键是求出y的n阶导数$\frac{d^n y}{dx^n}$。我们记$f^{(n)}(y)=\frac{d^n x}{dy^n}$,并且有
$$\frac{dy}{dx}=\frac{1}{(\frac{dx}{dy})}=f'(y)^{-1}$$

点击阅读全文...

6 Oct

关于交错级数的审敛法则

首先我们考虑下级数
$$S=\sum_{i=1}^n (-1)^{i+1}(1/i)=1-1/2+1/3-1/4+...+(-1)^{n+1}(1/n)$$
当$n->\infty$的敛散性。

首先由于$\lim_{n->\infty}(-1)^{n+1}(1/n)=0$,所以如果S发散,必定$S->\infty$.

我们不妨假设这个级数发散,于是

点击阅读全文...