4 Dec

层次分解位置编码,让BERT可以处理超长文本

大家都知道,目前的主流的BERT模型最多能处理512个token的文本。导致这一瓶颈的根本原因是BERT使用了从随机初始化训练出来的绝对位置编码,一般的最大位置设为了512,因此顶多只能处理512个token,多出来的部分就没有位置编码可用了。当然,还有一个重要的原因是Attention的$\mathcal{O}(n^2)$复杂度,导致长序列时显存用量大大增加,一般显卡也finetune不了。

位置编码的层次分解示意图

位置编码的层次分解示意图

本文主要面向前一个原因,即假设有足够多的显存前提下,如何简单修改当前最大长度为512的BERT模型,使得它可以直接处理更长的文本,主要思路是层次分解已经训练好的绝对位置编码,使得它可以延拓到更长的位置。

点击阅读全文...

14 Dec

Mitchell近似:乘法变为加法,误差不超过1/9

今天给大家介绍一篇1962年的论文《Computer Multiplication and Division Using Binary Logarithms》,作者是John N. Mitchell,他在里边提出了一个相当有意思的算法:在二进制下,可以完全通过加法来近似完成两个数的相乘,最大误差不超过1/9。整个算法相当巧妙,更有意思的是它还有着非常简洁的编程实现,让人拍案叫绝。然而,笔者发现网上居然找不到介绍这个算法的网页,所以在此介绍一番。

你以为这只是过时的玩意?那你就错了,前不久才有人利用它发了一篇NeurIPS 2020呢!所以,确定不来了解一下吗?

点击阅读全文...

21 Dec

从动力学角度看优化算法(七):SGD ≈ SVM?

众所周知,在深度学习之前,机器学习是SVM(Support Vector Machine,支持向量机)的天下,曾经的它可谓红遍机器学习的大江南北,迷倒万千研究人员,直至今日,“手撕SVM”仍然是大厂流行的面试题之一。然而,时过境迁,当深度学习流行起来之后,第一个革的就是SVM的命,现在只有在某些特别追求效率的场景以及大厂的面试题里边,才能看到SVM的踪迹了。

峰回路转的是,最近Arxiv上的一篇论文《Every Model Learned by Gradient Descent Is Approximately a Kernel Machine》做了一个非常“霸气”的宣言:

任何由梯度下降算法学出来的模型,都是可以近似看成是一个SVM!

这结论真不可谓不“霸气”,因为它已经不只是针对深度学习了,而是只要你用梯度下降优化的,都不过是一个SVM(的近似)。笔者看了一下原论文的分析,感觉确实挺有意思也挺合理的,有助于加深我们对很多模型的理解,遂跟大家分享一下。

点击阅读全文...

24 Dec

RealFormer:把残差转移到Attention矩阵上面去

大家知道Layer Normalization是Transformer模型的重要组成之一,它的用法有PostLN和PreLN两种,论文《On Layer Normalization in the Transformer Architecture》中有对两者比较详细的分析。简单来说,就是PreLN对梯度下降更加友好,收敛更快,对训练时的超参数如学习率等更加鲁棒等,反正一切都好但就有一点硬伤:PreLN的性能似乎总略差于PostLN。最近Google的一篇论文《RealFormer: Transformer Likes Residual Attention》提出了RealFormer设计,成功地弥补了这个Gap,使得模型拥有PreLN一样的优化友好性,并且效果比PostLN还好,可谓“鱼与熊掌兼得”了。

PostLN、PreLN和RealFormer结构示意图

PostLN、PreLN和RealFormer结构示意图

点击阅读全文...

7 Jan

【搜出来的文本】⋅(一)从文本生成到搜索采样

最近,笔者入了一个新坑:基于离散优化的思想做一些文本生成任务。简单来说,就是把我们要生成文本的目标量化地写下来,构建一个分布,然后搜索这个分布的最大值点或者从这个分布中进行采样,这个过程通常不需要标签数据的训练。由于语言是离散的,因此梯度下降之类的连续函数优化方法不可用,并且由于这个分布通常没有容易采样的形式,直接采样也不可行,因此需要一些特别设计的采样算法,比如拒绝采样(Rejection Sampling)、MCMC(Markov Chain Monte Carlo)、MH采样(Metropolis-Hastings Sampling)、吉布斯采样(Gibbs Sampling),等等。

有些读者可能会觉得有些眼熟,似乎回到了让人头大的学习LDA(Latent Dirichlet Allocation)的那些年?没错,上述采样算法其实也是理解LDA模型的必备基础。本文我们就来回顾这些形形色色的采样算法,它们将会出现在后面要介绍的丰富的文本生成应用中。

点击阅读全文...

9 Feb

果蝇(图片来自Google搜索)

果蝇(图片来自Google搜索)

可能有些读者最近会留意到ICLR 2021的论文《Can a Fruit Fly Learn Word Embeddings?》,文中写到它是基于仿生思想(仿果蝇的嗅觉回路)做出来的一个二值化词向量模型。其实论文的算法部分并不算难读,可能整篇论文读下来大家的最主要疑惑就是“这东西跟果蝇有什么关系?”、“作者真是从果蝇里边受到启发的?”等等。本文就让我们来追寻一下该算法的来龙去脉,试图回答一下这个词向量模型是怎么跟果蝇搭上关系的。

BioWord

原论文并没有给该词向量模型起个名字,为了称呼上的方便,这里笔者就自作主张将其称为“BioWord”了。总的来说,论文内容大体上有三部分:

1、给每个n-gram构建了一个词袋表示向量;

2、对这些n-gram向量执行BioHash算法,得到所谓的(二值化的)静态/动态词向量;

3、“拼命”讲了一个故事。

点击阅读全文...

26 Jan

Seq2Seq重复解码现象的理论分析尝试

去年笔者写过博文《如何应对Seq2Seq中的“根本停不下来”问题?》,里边介绍了一篇论文中对Seq2Seq解码不停止现象的处理,并指出那篇论文只是提了一些应对该问题的策略,并没有提供原理上的理解。近日,笔者在Arixv读到了AAAI 2021的一篇名为《A Theoretical Analysis of the Repetition Problem in Text Generation》的论文,里边从理论上分析了Seq2Seq重复解码现象。从本质上来看,重复解码和解码不停止其实都是同理的,所以这篇新论文算是填补了前面那篇论文的空白。

经过学习,笔者发现该论文确实有不少可圈可点之处,值得一读。笔者对原论文中的分析过程做了一些精简、修正和推广,将结果记录成此文,供大家参考。此外,抛开问题背景不讲,读者也可以将本文当成一节矩阵分析习题课,供大家复习线性代数哈~

点击阅读全文...

3 Feb

让研究人员绞尽脑汁的Transformer位置编码

不同于RNN、CNN等模型,对于Transformer模型来说,位置编码的加入是必不可少的,因为纯粹的Attention模块是无法捕捉输入顺序的,即无法区分不同位置的Token。为此我们大体有两个选择:1、想办法将位置信息融入到输入中,这构成了绝对位置编码的一般做法;2、想办法微调一下Attention结构,使得它有能力分辨不同位置的Token,这构成了相对位置编码的一般做法。

虽然说起来主要就是绝对位置编码和相对位置编码两大类,但每一类其实又能衍生出各种各样的变种,为此研究人员可算是煞费苦心、绞尽脑汁了,此外还有一些不按套路出牌的位置编码。本文就让我们来欣赏一下研究人员为了更好地表达位置信息所构建出来的“八仙过海,各显神通”般的编码方案。

绝对位置编码

形式上来看,绝对位置编码是相对简单的一种方案,但即便如此,也不妨碍各路研究人员的奇思妙想,也有不少的变种。一般来说,绝对位置编码会加到输入中:在输入的第$k$个向量$\boldsymbol{x}_k$中加入位置向量$\boldsymbol{p}_k$变为$\boldsymbol{x}_k + \boldsymbol{p}_k$,其中$\boldsymbol{p}_k$只依赖于位置编号$k$。

点击阅读全文...