梯度流:探索通向最小值之路
By 苏剑林 | 2023-06-16 | 31188位读者 | 引用在这篇文章中,我们将探讨一个被称为“梯度流(Gradient Flow)”的概念。简单来说,梯度流是将我们在用梯度下降法中寻找最小值的过程中的各个点连接起来,形成一条随(虚拟的)时间变化的轨迹,这条轨迹便被称作“梯度流”。在文章的后半部分,我们将重点讨论如何将梯度流的概念扩展到概率空间,从而形成“Wasserstein梯度流”,为我们理解连续性方程、Fokker-Planck方程等内容提供一个新的视角。
梯度下降
假设我们想搜索光滑函数$f(\boldsymbol{x})$的最小值,常见的方案是梯度下降(Gradient Descent),即按照如下格式进行迭代:
\begin{equation}\boldsymbol{x}_{t+1} = \boldsymbol{x}_t -\alpha \nabla_{\boldsymbol{x}_t}f(\boldsymbol{x}_t)\label{eq:gd-d}\end{equation}
如果$f(\boldsymbol{x})$关于$\boldsymbol{x}$是凸的,那么梯度下降通常能够找到最小值点;相反,则通常只能收敛到一个“驻点”——即梯度为0的点,比较理想的情况下能收敛到一个极小值(局部最小值)点。这里没有对极小值和最小值做严格区分,因为在深度学习中,即便是收敛到一个极小值点也是很难得的了。
生成扩散模型漫谈(十七):构建ODE的一般步骤(下)
By 苏剑林 | 2023-02-23 | 76382位读者 | 引用历史总是惊人地相似。当初笔者在写《生成扩散模型漫谈(十四):构建ODE的一般步骤(上)》(当时还没有“上”这个后缀)时,以为自己已经搞清楚了构建ODE式扩散的一般步骤,结果读者 @gaohuazuo 就给出了一个新的直观有效的方案,这直接导致了后续《生成扩散模型漫谈(十四):构建ODE的一般步骤(中)》(当时后缀是“下”)。而当笔者以为事情已经终结时,却发现ICLR2023的论文《Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow》又给出了一个构建ODE式扩散模型的新方案,其简洁、直观的程度简直前所未有,令人拍案叫绝。所以笔者只好默默将前一篇的后缀改为“中”,然后写了这个“下”篇来分享这一新的结果。
直观结果
我们知道,扩散模型是一个$\boldsymbol{x}_T\to \boldsymbol{x}_0$的演化过程,而ODE式扩散模型则指定演化过程按照如下ODE进行:
\begin{equation}\frac{d\boldsymbol{x}_t}{dt}=\boldsymbol{f}_t(\boldsymbol{x}_t)\label{eq:ode}\end{equation}
而所谓构建ODE式扩散模型,就是要设计一个函数$\boldsymbol{f}_t(\boldsymbol{x}_t)$,使其对应的演化轨迹构成给定分布$p_T(\boldsymbol{x}_T)$、$p_0(\boldsymbol{x}_0)$之间的一个变换。说白了,我们希望从$p_T(\boldsymbol{x}_T)$中随机采样一个$\boldsymbol{x}_T$,然后按照上述ODE向后演化得到的$\boldsymbol{x}_0$是$\sim p_0(\boldsymbol{x}_0)$的。
生成扩散模型漫谈(十八):得分匹配 = 条件得分匹配
By 苏剑林 | 2023-02-28 | 29046位读者 | 引用在前面的介绍中,我们多次提及“得分匹配”和“条件得分匹配”,它们是扩散模型、能量模型等经常出现的概念,特别是很多文章直接说扩散模型的训练目标是“得分匹配”,但事实上当前主流的扩散模型如DDPM的训练目标是“条件得分匹配”才对。
那么“得分匹配”与“条件得分匹配”具体是什么关系呢?它们两者是否等价呢?本文详细讨论这个问题。
得分匹配
首先,得分匹配(Score Matching)是指训练目标:
\begin{equation}\mathbb{E}_{\boldsymbol{x}_t\sim p_t(\boldsymbol{x}_t)}\left[\left\Vert\nabla_{\boldsymbol{x}_t}\log p_t(\boldsymbol{x}_t) - \boldsymbol{s}_{\boldsymbol{\theta}}(\boldsymbol{x}_t,t)\right\Vert^2\right]\label{eq:sm}\end{equation}
其中$\boldsymbol{\theta}$是训练参数。很明显,得分匹配是想学习一个模型$\boldsymbol{s}_{\boldsymbol{\theta}}(\boldsymbol{x}_t,t)$来逼近$\nabla_{\boldsymbol{x}_t}\log p_t(\boldsymbol{x}_t)$,这里的$\nabla_{\boldsymbol{x}_t}\log p_t(\boldsymbol{x}_t)$我们就称为“得分”。
NBCE:使用朴素贝叶斯扩展LLM的Context处理长度
By 苏剑林 | 2023-05-23 | 77122位读者 | 引用在LLM时代还玩朴素贝叶斯(Naive Bayes)?
这可能是许多读者在看到标题后的首个想法。确实如此,当古老的朴素贝叶斯与前沿的LLM相遇时,产生了令人惊讶的效果——我们可以直接扩展现有LLM模型的Context处理长度,无需对模型进行微调,也不依赖于模型架构,具有线性效率,而且效果看起来还不错——这就是本文所提出的NBCE(Naive Bayes-based Context Extension)方法。
摸石过河
假设$T$为要生成的token序列,$S_1,S_2,\cdots,S_n$是给定的若干个相对独立的Context集合(比如$n$个不同的段落,至少不是一个句子被分割为两个片段那种),假设它们的总长度已经超过了训练长度,而单个$S_k$加$T$还在训练长度内。我们需要根据$S_1,S_2,\cdots,S_n$生成$T$,即估计$p(T|S_1, S_2,\cdots,S_n)$。
Bias项的神奇作用:RoPE + Bias = 更好的长度外推性
By 苏剑林 | 2023-04-03 | 40749位读者 | 引用【注:后来经过反复测试发现,发现此篇文章的长度外推结果可复现性比较不稳定(可能跟模型结构、超参数等紧密相关),请自行斟酌使用。】
万万没想到,Bias项能跟Transformer的长度外推性联系在一起!
长度外推性是我们希望Transformer具有的一个理想性质,笔者曾在《Transformer升级之路:7、长度外推性与局部注意力》、《Transformer升级之路:8、长度外推性与位置鲁棒性》系统地介绍过这一问题。至于Bias项(偏置项),目前的主流观点是当模型足够大时,Bias项不会有什么特别的作用,所以很多模型选择去掉Bias项,其中代表是Google的T5和PaLM,我们后面做的RoFormerV2和GAU-α也沿用了这个做法。
那么,这两个看上去“风牛马不相及”的东西,究竟是怎么联系起来的呢?Bias项真的可以增强Transformer的长度外推性?且听笔者慢慢道来。
Transformer升级之路:9、一种全局长度外推的新思路
By 苏剑林 | 2023-05-12 | 56492位读者 | 引用说到Transformer无法处理超长序列的原因,大家的第一反应通常都是Self Attention的二次复杂度。但事实上,即便忽略算力限制,常规的Transformer也无法处理超长序列,因为它们的长度外推性(Length Extrapolation)并不好,具体表现为当输入序列明显超过训练长度时,模型的效果通常会严重下降。
尽管已有一些相关工作,但长度外推问题离实际解决还比较远。本文介绍笔者构思的一种参考方案,它可能是目前唯一一种可以用在生成模型上、具备全局依赖能力的长度外推方法。
方法回顾
长度外推,也称为长度泛化(Length Generalization),此前我们在《Transformer升级之路:7、长度外推性与局部注意力》、《Transformer升级之路:8、长度外推性与位置鲁棒性》已经介绍过部分工作。然而,它们各有各的问题。
当生成模型肆虐:互联网将有“疯牛病”之忧?
By 苏剑林 | 2023-07-14 | 48854位读者 | 引用众所周知,不管是文本还是视觉领域,各种生成模型正在以无法阻挡的势头“肆虐”互联网。虽然大家都明白,实现真正的通用人工智能(AGI)还有很长的路要走,但这并不妨碍人们越来越频繁地利用生成模型来创作和分享内容。君不见,很多网络文章已经配上了Stable Diffusion模型生成的插图;君不见,很多新闻风格已经越来越显现出ChatGPT的影子。看似无害的这种趋势,正悄然引发了一个问题:我们是否应该对互联网上充斥的生成模型数据保持警惕?
近期发表的论文《Self-Consuming Generative Models Go MAD》揭示了一种令人担忧的可能性,那就是生成模型正在互联网上的无节制扩张,可能会导致一场数字版的“疯牛病”疫情。本文一起学习这篇论文,探讨其可能带来的影响。
大词表语言模型在续写任务上的一个问题及对策
By 苏剑林 | 2023-09-13 | 30544位读者 | 引用对于LLM来说,通过增大Tokenizer的词表来提高压缩率,从而缩短序列长度、降低解码成本,是大家都喜闻乐见的事情。毕竟增大词表只需要增大Embedding层和输出的Dense层,这部分增加的计算量几乎不可感知,但缩短序列长度之后带来的解码速度提升却是实打实的。当然,增加词表大小也可能会对模型效果带来一些负面影响,所以也不能无节制地增加词表大小。本文就来分析增大词表后语言模型在续写任务上会出现的一个问题,并提出参考的解决方案。
优劣分析
增加词表大小的好处是显而易见的。一方面,由于LLM是自回归的,它的解码会越来越慢,而“增大词表 → 提高压缩率 → 缩短序列长度”,换言之相同文本对应的tokens数变少了,也就是解码步数变少了,从而解码速度提升了;另一方面,语言模型的训练方式是Teacher Forcing,缩短序列长度能够缓解Teacher Forcing带来的Exposure Bias问题,从而可能提升模型效果。
最近评论