3 Sep

百度实体链接比赛后记:行为建模和实体链接

前几个月曾参加了百度的实体链接比赛,这是CCKS2019的评测任务之一,官方称之为“实体链指”,比赛于前几个星期完全结束。笔者最终的F1是0.78左右(冠军是0.80),排在第14名,成绩并不突出(唯一的特色是模型很轻量级,GTX1060都可以轻松跑起来),所以本文只是纯粹的记录过程,大牛们请一笑置之~

本文的实体链接模型总图(可以点击查看大图)

本文的实体链接模型总图(可以点击查看大图)

赛题介绍

所谓实体链接,主要指的是在已有一个知识库的情况下,预测输入query的某个实体对应知识库id。也就是说,知识库里边记录了很多实体,对于同一个名字的实体可能会有多个解释,每个解释用一个唯一id编号,我们要做的就是预测query中的实体究竟对应哪一个解释(id)。这是基于知识图谱的问答系统的必要步骤。

点击阅读全文...

31 Oct

从去噪自编码器到生成模型

在我看来,几大顶会之中,ICLR的论文通常是最有意思的,因为它们的选题和风格基本上都比较轻松活泼、天马行空,让人有脑洞大开之感。所以,ICLR 2020的投稿论文列表出来之后,我也抽时间粗略过了一下这些论文,确实发现了不少有意思的工作。

其中,我发现了两篇利用去噪自编码器的思想做生成模型的论文,分别是《Learning Generative Models using Denoising Density Estimators》《Annealed Denoising Score Matching: Learning Energy-Based Models in High-Dimensional Spaces》。由于常规做生成模型的思路我基本都有所了解,所以这种“别具一格”的思路就引起了我的兴趣。细读之下,发现两者的出发点是一致的,但是具体做法又有所不同,最终的落脚点又是一样的,颇有“一题多解”的美妙,遂将这两篇论文放在一起,对比分析一翻。

fashion mnist、CelebA、cifar10上的生成效果

fashion mnist、CelebA、cifar10上的生成效果

点击阅读全文...

16 Jan

从几何视角来理解模型参数的初始化策略

对于复杂模型来说,参数的初始化显得尤为重要。糟糕的初始化,很多时候已经不单是模型效果变差的问题了,还更有可能是模型根本训练不动或者不收敛。在深度学习中常见的自适应初始化策略是Xavier初始化,它是从正态分布$\mathcal{N}\left(0,\frac{2}{fan_{in} + fan_{out}}\right)$中随机采样而构成的初始权重,其中$fan_{in}$是输入的维度而$fan_{out}$是输出的维度。其他初始化策略基本上也类似,只不过假设有所不同,导致最终形式略有差别。

标准的初始化策略的推导是基于概率统计的,大概的思路是假设输入数据的均值为0、方差为1,然后期望输出数据也保持均值为0、方差为1,然后推导出初始变换应该满足的均值和方差条件。这个过程理论上没啥问题,但在笔者看来依然不够直观,而且推导过程的假设有点多。本文则希望能从几何视角来理解模型的初始化方法,给出一个更直观的推导过程。

信手拈来的正交

前者时间笔者写了《n维空间下两个随机向量的夹角分布》,其中的一个推论是

推论1: 高维空间中的任意两个随机向量几乎都是垂直的。

点击阅读全文...

24 Feb

CRF用过了,不妨再了解下更快的MEMM?

HMM、MEMM、CRF被称为是三大经典概率图模型,在深度学习之前的机器学习时代,它们被广泛用于各种序列标注相关的任务中。一个有趣的现象是,到了深度学习时代,HMM和MEMM似乎都“没落”了,舞台上就只留下CRF。相信做NLP的读者朋友们就算没亲自做过也会听说过BiLSTM+CRF做中文分词、命名实体识别等任务,却几乎没有听说过BiLSTM+HMM、BiLSTM+MEMM的,这是为什么呢?

今天就让我们来学习一番MEMM,并且通过与CRF的对比,来让我们更深刻地理解概率图模型的思想与设计。

模型推导

MEMM全称Maximum Entropy Markov Model,中文名可译为“最大熵马尔可夫模型”。不得不说,这个名字可能会吓退80%的初学者:最大熵还没搞懂,马尔可夫也不认识,这两个合起来怕不是天书?而事实上,不管是MEMM还是CRF,它们的模型都远比它们的名字来得简单,它们的概念和设计都非常朴素自然,并不难理解。

点击阅读全文...

1 Mar

对抗训练浅谈:意义、方法和思考(附Keras实现)

当前,说到深度学习中的对抗,一般会有两个含义:一个是生成对抗网络(Generative Adversarial Networks,GAN),代表着一大类先进的生成模型;另一个则是跟对抗攻击、对抗样本相关的领域,它跟GAN相关,但又很不一样,它主要关心的是模型在小扰动下的稳健性。本博客里以前所涉及的对抗话题,都是前一种含义,而今天,我们来聊聊后一种含义中的“对抗训练”。

本文包括如下内容:

1、对抗样本、对抗训练等基本概念的介绍;

2、介绍基于快速梯度上升的对抗训练及其在NLP中的应用;

3、给出了对抗训练的Keras实现(一行代码调用);

4、讨论了对抗训练与梯度惩罚的等价性;

5、基于梯度惩罚,给出了一种对抗训练的直观的几何理解。

点击阅读全文...

23 Mar

AdaFactor优化器浅析(附开源实现)

自从GPT、BERT等预训练模型流行起来后,其中一个明显的趋势是模型越做越大,因为更大的模型配合更充分的预训练通常能更有效地刷榜。不过,理想可以无限远,现实通常很局促,有时候模型太大了,大到哪怕你拥有了大显存的GPU甚至TPU,依然会感到很绝望。比如GPT2最大的版本有15亿参数,最大版本的T5模型参数量甚至去到了110亿,这等规模的模型,哪怕在TPU集群上也没法跑到多大的batch size。

这时候通常要往优化过程着手,比如使用混合精度训练(tensorflow下还可以使用一种叫做bfloat16的新型浮点格式),即省显存又加速训练;又或者使用更省显存的优化器,比如RMSProp就比Adam更省显存。本文则介绍AdaFactor,一个由Google提出来的新型优化器,首发论文为《Adafactor: Adaptive Learning Rates with Sublinear Memory Cost》AdaFactor具有自适应学习率的特性,但比RMSProp还要省显存,并且还针对性地解决了Adam的一些缺陷。

Adam

首先我们来回顾一下常用的Adam优化器的更新过程。设$t$为迭代步数,$\alpha_t$为当前学习率,$L(\theta)$是损失函数,$\theta$是待优化参数,$\epsilon$则是防止溢出的小正数,那么Adam的更新过程为

点击阅读全文...

20 Apr

EAE:自编码器 + BN + 最大熵 = 生成模型

生成模型一直是笔者比较关注的主题,不管是NLP和CV的生成模型都是如此。这篇文章里,我们介绍一个新颖的生成模型,来自论文《Batch norm with entropic regularization turns deterministic autoencoders into generative models》,论文中称之为EAEEntropic AutoEncoder)。它要做的事情给变分自编码器(VAE)基本一致,最终效果其实也差不多(略优),说它新颖并不是它生成效果有多好,而是思路上的新奇,颇有别致感。此外,借着这个机会,我们还将学习一种统计量的估计方法——$k$邻近方法,这是一种很有用的非参数估计方法。

自编码器vs生成模型

普通的自编码器是一个“编码-解码”的重构过程,如下图所示:

典型自编码器示意图

典型自编码器示意图

其loss一般为
\begin{equation}L_{AE} = \mathbb{E}_{x\sim \tilde{p}(x)}\left[\left\Vert x - \hat{x}\right\Vert^2\right] = \mathbb{E}_{x\sim \tilde{p}(x)}\left[\left\Vert x - D(E(x))\right\Vert^2\right]\end{equation}

点击阅读全文...

13 May

从EMD、WMD到WRD:文本向量序列的相似度计算

在NLP中,我们经常要去比较两个句子的相似度,其标准方法是想办法将句子编码为固定大小的向量,然后用某种几何距离(欧氏距离、$\cos$距离等)作为相似度。这种方案相对来说比较简单,而且检索起来比较快速,一定程度上能满足工程需求。

此外,还可以直接比较两个变长序列的差异性,比如编辑距离,它通过动态规划找出两个字符串之间的最优映射,然后算不匹配程度;现在我们还有Word2Vec、BERT等工具,可以将文本序列转换为对应的向量序列,所以也可以直接比较这两个向量序列的差异,而不是先将向量序列弄成单个向量。

后一种方案速度相对慢一点,但可以比较得更精细一些,并且理论比较优雅,所以也有一定的应用场景。本文就来简单介绍一下属于后者的两个相似度指标,分别简称为WMD、WRD。

Earth Mover's Distance

本文要介绍的两个指标都是以Wasserstein距离为基础,这里会先对它做一个简单的介绍,相关内容也可以阅读笔者旧作《从Wasserstein距离、对偶理论到WGAN》。Wasserstein距离也被形象地称之为“推土机距离”(Earth Mover's DistanceEMD),因为它可以用一个“推土”的例子来通俗地表达它的含义。

点击阅读全文...