UniVAE:基于Transformer的单模型、多尺度的VAE模型
By 苏剑林 | 2021-06-29 | 72184位读者 | 引用bert4keras在手,baseline我有:CLUE基准代码
By 苏剑林 | 2021-10-31 | 75737位读者 | 引用CLUE(Chinese GLUE)是中文自然语言处理的一个评价基准,目前也已经得到了较多团队的认可。CLUE官方Github提供了tensorflow和pytorch的baseline,但并不易读,而且也不方便调试。事实上,不管是tensorflow还是pytorch,不管是CLUE还是GLUE,笔者认为能找到的baseline代码,都很难称得上人性化,试图去理解它们是一件相当痛苦的事情。
所以,笔者决定基于bert4keras实现一套CLUE的baseline。经过一段时间的测试,基本上复现了官方宣称的基准成绩,并且有些任务还更优。最重要的是,所有代码尽量保持了清晰易读的特点,真·“Deep Learning for Humans”。
代码简介
下面简单介绍一下该代码中各个任务baseline的构建思路。在阅读文章和代码之前,请读者自行先观察一下每个任务的数据格式,这里不对任务数据进行详细介绍。
概率视角下的线性模型:逻辑回归有解析解吗?
By 苏剑林 | 2021-07-22 | 76199位读者 | 引用我们知道,线性回归是比较简单的问题,它存在解析解,而它的变体逻辑回归(Logistic Regression)却没有解析解,这不能不说是一个遗憾。因为逻辑回归虽然也叫“回归”,但它实际上是用于分类问题的,而对于很多读者来说分类比回归更加常见。准确来说,我们说逻辑回归没有解析解,说的是“最大似然估计下逻辑回归没有解析解”。那么,这是否意味着,如果我们不用最大似然估计,是否能找到一个可用的解析解呢?
本文将会从非最大似然的角度,推导逻辑回归的一个解析解,简单的实验表明它效果不逊色于梯度下降求出来的最大似然解。此外,这个解析解还易于推广到单层Softmax多分类模型。
从三角不等式到Margin Softmax
By 苏剑林 | 2021-09-01 | 33534位读者 | 引用在《基于GRU和AM-Softmax的句子相似度模型》中我们介绍了AM-Softmax,它是一种带margin的softmax,通常用于用分类做检索的场景。当时通过图示的方式简单说了一下引入margin是因为“分类与排序的不等价性”,但没有比较定量地解释这种不等价性的来源。
在这篇文章里,我们来重提这个话题,从距离的三角不等式的角度来推导和理解margin的必要性。
三角不等式
平时,我们说的距离一般指比较直观的“欧氏距离”,但在数学上距离,距离又叫“度量”,它有公理化的定义,是指定义在某个集合上的二元函数$d(x,y)$,满足:
线性Transformer应该不是你要等的那个模型
By 苏剑林 | 2021-08-09 | 100499位读者 | 引用在本博客中,我们已经多次讨论过线性Attention的相关内容。介绍线性Attention的逻辑大体上都是:标准Attention具有$\mathcal{O}(n^2)$的平方复杂度,是其主要的“硬伤”之一,于是我们$\mathcal{O}(n)$复杂度的改进模型,也就是线性Attention。有些读者看到线性Attention的介绍后,就一直很期待我们发布基于线性Attention的预训练模型,以缓解他们被BERT的算力消耗所折腾的“死去活来”之苦。
然而,本文要说的是:抱有这种念头的读者可能要失望了,标准Attention到线性Attention的转换应该远远达不到你的预期,而BERT那么慢的原因也并不是因为标准Attention的平方复杂度。
BERT之反思
按照直观理解,平方复杂度换成线性复杂度不应该要“突飞猛进”才对嘛?怎么反而“远远达不到预期”?出现这个疑惑的主要原因,是我们一直以来都没有仔细评估一下常规的Transformer模型(如BERT)的整体计算量。
FlatNCE:小批次对比学习效果差的原因竟是浮点误差?
By 苏剑林 | 2021-07-26 | 45479位读者 | 引用自SimCLR在视觉无监督学习大放异彩以来,对比学习逐渐在CV乃至NLP中流行了起来,相关研究和工作越来越多。标准的对比学习的一个广为人知的缺点是需要比较大的batch_size(SimCLR在batch_size=4096时效果最佳),小batch_size的时候效果会明显降低,为此,后续工作的改进方向之一就是降低对大batch_size的依赖。那么,一个很自然的问题是:标准的对比学习在小batch_size时效果差的原因究竟是什么呢?
近日,一篇名为《Simpler, Faster, Stronger: Breaking The log-K Curse On Contrastive Learners With FlatNCE》对此问题作出了回答:因为浮点误差。看起来真的很让人难以置信,但论文的分析确实颇有道理,并且所提出的改进FlatNCE确实也工作得更好,让人不得不信服。
细微之处
接下来,笔者将按照自己的理解和记号来介绍原论文的主要内容。对比学习(Contrastive Learning)就不帮大家详细复习了,大体上来说,对于某个样本$x$,我们需要构建$K$个配对样本$y_1,y_2,\cdots,y_K$,其中$y_t$是正样本而其余都是负样本,然后分别给每个样本对$(x, y_i)$打分,分别记为$s_1,s_2,\cdots,s_K$,对比学习希望拉大正负样本对的得分差,通常直接用交叉熵作为损失:
\begin{equation}-\log \frac{e^{s_t}}{\sum\limits_i e^{s_i}} = \log \left(\sum_i e^{s_i}\right) - s_t = \log \left(1 + \sum_{i\neq t} e^{s_i - s_t}\right)\end{equation}
Transformer升级之路:5、作为无限维的线性Attention
By 苏剑林 | 2021-08-06 | 23371位读者 | 引用在《Performer:用随机投影将Attention的复杂度线性化》中我们了解到Google提出的Performer模型,它提出了一种随机投影方案,可以将标准Attention转化为线性Attention,并保持一定的近似。理论上来说,只要投影的维度足够大,那么可以足够近似标准Attention。换句话说,标准Attention可以视作一个无限维的线性Attention。
本文将介绍笔者构思的另外两种将标准Attention转换为无限维线性Attention的思路,不同于Performer的随机投影,笔者构思的这两种方案都是确定性的,并且能比较方便地感知近似程度。
简要介绍
关于标准Attention和线性Attention,这里就不多做介绍了,还不了解的读者可以参考笔者之前的文章《线性Attention的探索:Attention必须有个Softmax吗?》和《Transformer升级之路:3、从Performer到线性Attention》。简单来说,标准Attention的计算方式为
\begin{equation}a_{i,j}=\frac{e^{\boldsymbol{q}_i\cdot \boldsymbol{k}_j}}{\sum\limits_j e^{\boldsymbol{q}_i\cdot \boldsymbol{k}_j}}\end{equation}
隐藏在动量中的梯度累积:少更新几步,效果反而更好?
By 苏剑林 | 2021-08-24 | 32736位读者 | 引用我们知道,梯度累积是在有限显存下实现大batch_size训练的常用技巧。在之前的文章《用时间换取效果:Keras梯度累积优化器》中,我们就简单介绍过梯度累积的实现,大致的思路是新增一组参数来缓存梯度,最后用缓存的梯度来更新模型。美中不足的是,新增一组参数会带来额外的显存占用。
这几天笔者在思考优化器的时候,突然意识到:梯度累积其实可以内置在带动量的优化器中!带着这个思路,笔者对优化了进行了一些推导和实验,最后还得到一个有意思但又有点反直觉的结论:少更新几步参数,模型最终效果可能会变好!
注:本文下面的结果,几乎原封不动且没有引用地出现在Google的论文《Combined Scaling for Zero-shot Transfer Learning》中,在此不做过多评价,请读者自行品评。
SGDM
在正式讨论之前,我们定义函数
\begin{equation}\chi_{t/k} = \left\{ \begin{aligned}&1,\quad t \equiv 0\,(\text{mod}\, k) \\
&0,\quad t \not\equiv 0\,(\text{mod}\, k)
\end{aligned}\right.\end{equation}
也就是说,$t$是一个整数,当它是$k$的倍数时,$\chi_{t/k}=1$,否则$\chi_{t/k}=0$,这其实就是一个$t$能否被$k$整除的示性函数。在后面的讨论中,我们将反复用到这个函数。
最近评论