24 Feb

CRF用过了,不妨再了解下更快的MEMM?

HMM、MEMM、CRF被称为是三大经典概率图模型,在深度学习之前的机器学习时代,它们被广泛用于各种序列标注相关的任务中。一个有趣的现象是,到了深度学习时代,HMM和MEMM似乎都“没落”了,舞台上就只留下CRF。相信做NLP的读者朋友们就算没亲自做过也会听说过BiLSTM+CRF做中文分词、命名实体识别等任务,却几乎没有听说过BiLSTM+HMM、BiLSTM+MEMM的,这是为什么呢?

今天就让我们来学习一番MEMM,并且通过与CRF的对比,来让我们更深刻地理解概率图模型的思想与设计。

模型推导

MEMM全称Maximum Entropy Markov Model,中文名可译为“最大熵马尔可夫模型”。不得不说,这个名字可能会吓退80%的初学者:最大熵还没搞懂,马尔可夫也不认识,这两个合起来怕不是天书?而事实上,不管是MEMM还是CRF,它们的模型都远比它们的名字来得简单,它们的概念和设计都非常朴素自然,并不难理解。

点击阅读全文...

1 Mar

对抗训练浅谈:意义、方法和思考(附Keras实现)

当前,说到深度学习中的对抗,一般会有两个含义:一个是生成对抗网络(Generative Adversarial Networks,GAN),代表着一大类先进的生成模型;另一个则是跟对抗攻击、对抗样本相关的领域,它跟GAN相关,但又很不一样,它主要关心的是模型在小扰动下的稳健性。本博客里以前所涉及的对抗话题,都是前一种含义,而今天,我们来聊聊后一种含义中的“对抗训练”。

本文包括如下内容:

1、对抗样本、对抗训练等基本概念的介绍;

2、介绍基于快速梯度上升的对抗训练及其在NLP中的应用;

3、给出了对抗训练的Keras实现(一行代码调用);

4、讨论了对抗训练与梯度惩罚的等价性;

5、基于梯度惩罚,给出了一种对抗训练的直观的几何理解。

点击阅读全文...

9 Mar

Seq2Seq中Exposure Bias现象的浅析与对策

前些天笔者写了《CRF用过了,不妨再了解下更快的MEMM?》,里边提到了MEMM的局部归一化和CRF的全局归一化的优劣。同时,笔者联想到了Seq2Seq模型,因为Seq2Seq模型的典型训练方案Teacher Forcing就是一个局部归一化模型,所以它也存在着局部归一化所带来的毛病——也就是我们经常说的“Exposure Bias”。带着这个想法,笔者继续思考了一翻,将最后的思考结果记录在此文。

经典的Seq2Seq模型图示

经典的Seq2Seq模型图示

本文算是一篇进阶文章,适合对Seq2Seq模型已经有一定的了解、希望进一步提升模型的理解或表现的读者。关于Seq2Seq的入门文章,可以阅读旧作《玩转Keras之seq2seq自动生成标题》《从语言模型到Seq2Seq:Transformer如戏,全靠Mask》

本文的内容大致为:

1、Exposure Bias的成因分析及例子;

2、简单可行的缓解Exposure Bias问题的策略。

点击阅读全文...

25 May

Google新作Synthesizer:我们还不够了解自注意力

深度学习这个箱子,远比我们想象的要黑。

写在开头

据说物理学家费曼说过一句话[来源]:“谁要是说他懂得量子力学,那他就是真的不懂量子力学。”我现在越来越觉得,这句话中的“量子力学”也可以替换为“深度学习”。尽管深度学习已经在越来越多的领域证明了其有效性,但我们对它的解释性依然相当无力。当然,这几年来已经有不少工作致力于打开深度学习这个黑箱,但是很无奈,这些工作基本都是“马后炮”式的,也就是在已有的实验结果基础上提出一些勉强能说服自己的解释,无法做到自上而下的构建和理解模型的原理,更不用说提出一些前瞻性的预测。

本文关注的是自注意力机制。直观上来看,自注意力机制算是解释性比较强的模型之一了,它通过自己与自己的Attention来自动捕捉了token与token之间的关联,事实上在《Attention is All You Need》那篇论文中,就给出了如下的看上去挺合理的可视化效果:

《Attention is All You Need》一文中对Attention的可视化例子

《Attention is All You Need》一文中对Attention的可视化例子

但自注意力机制真的是这样生效的吗?这种“token对token”的注意力是必须的吗?前不久Google的新论文《Synthesizer: Rethinking Self-Attention in Transformer Models》对自注意力机制做了一些“异想天开”的探索,里边的结果也许会颠覆我们对自注意力的认知。

点击阅读全文...

10 Sep

变分自编码器(六):从几何视角来理解VAE的尝试

前段时间公司组织技术分享,轮到笔者时,大家希望我讲讲VAE。鉴于之前笔者也写过变分自编码器系列,所以对笔者来说应该也不是特别难的事情,因此就答应了下来,后来仔细一想才觉得犯难:怎么讲才好呢?

变分自编码器示意图

变分自编码器示意图

对于VAE来说,之前笔者有两篇比较系统的介绍:《变分自编码器(一):原来是这么一回事》《变分自编码器(二):从贝叶斯观点出发》。后者是纯概率推导,对于不做理论研究的人来说其实没什么意义,也不一定能看得懂;前者虽然显浅一点,但也不妥,因为它是从生成模型的角度来讲的,并没有说清楚“为什么需要VAE”(说白了,VAE可以带来生成模型,但是VAE并不一定就为了生成模型),整体风格也不是特别友好。

笔者想了想,对于大多数不了解但是想用VAE的读者来说,他们应该只希望大概了解VAE的形式,然后想要知道“VAE有什么作用”、“VAE相比AE有什么区别”、“什么场景下需要VAE”等问题的答案,对于这种需求,上面两篇文章都无法很好地满足。于是笔者尝试构思了VAE的一种几何图景,试图从几何角度来描绘VAE的关键特性,在此也跟大家分享一下。

点击阅读全文...

1 Jun

提高模型的泛化性能是机器学习致力追求的目标之一。常见的提高泛化性的方法主要有两种:第一种是添加噪声,比如往输入添加高斯噪声、中间层增加Dropout以及进来比较热门的对抗训练等,对图像进行随机平移缩放等数据扩增手段某种意义上也属于此列;第二种是往loss里边添加正则项,比如$L_1, L_2$惩罚、梯度惩罚等。本文试图探索几种常见的提高泛化性能的手段的关联。

随机噪声

我们记模型为$f(x)$,$\mathcal{D}$为训练数据集合,$l(f(x), y)$为单个样本的loss,那么我们的优化目标是
\begin{equation}\mathop{\text{argmin}}_{\theta} L(\theta)=\mathbb{E}_{(x,y)\sim \mathcal{D}}[l(f(x), y)]\end{equation}
$\theta$是$f(x)$里边的可训练参数。假如往模型输入添加噪声$\varepsilon$,其分布为$q(\varepsilon)$,那么优化目标就变为
\begin{equation}\mathop{\text{argmin}}_{\theta} L_{\varepsilon}(\theta)=\mathbb{E}_{(x,y)\sim \mathcal{D}, \varepsilon\sim q(\varepsilon)}[l(f(x + \varepsilon), y)]\end{equation}
当然,可以添加噪声的地方不仅仅是输入,也可以是中间层,也可以是权重$\theta$,甚至可以是输出$y$(等价于标签平滑),噪声也不一定是加上去的,比如Dropout是乘上去的。对于加性噪声来说,$q(\varepsilon)$的常见选择是均值为0、方差固定的高斯分布;而对于乘性噪声来说,常见选择是均匀分布$U([0,1])$或者是伯努利分布。

添加随机噪声的目的很直观,就是希望模型能学会抵御一些随机扰动,从而降低对输入或者参数的敏感性,而降低了这种敏感性,通常意味着所得到的模型不再那么依赖训练集,所以有助于提高模型泛化性能。

点击阅读全文...

5 Jun

为什么梯度裁剪能加速训练过程?一个简明的分析

本文介绍来自MIT的一篇ICLR 2020满分论文《Why gradient clipping accelerates training: A theoretical justification for adaptivity》,顾名思义,这篇论文就是分析为什么梯度裁剪能加速深度学习的训练过程。原文很长,公式很多,还有不少研究复杂性的概念,说实话对笔者来说里边的大部分内容也是懵的,不过大概能捕捉到它的核心思想:引入了比常用的L约束更宽松的约束条件,从新的条件出发论证了梯度裁剪的必要性。本文就是来简明分析一下这个过程,供读者参考。

梯度裁剪

假设需要最小化的函数为$f(\theta)$,$\theta$就是优化参数,那么梯度下降的更新公式就是
\begin{equation}\theta \leftarrow \theta-\eta \nabla_{\theta} f(\theta)\end{equation}
其中$\eta$就是学习率。而所谓梯度裁剪(gradient clipping),就是根据梯度的模长来对更新量做一个缩放,比如
\begin{equation}\theta \leftarrow \theta- \eta \nabla_{\theta} f(\theta)\times \min\left\{1, \frac{\gamma}{\Vert \nabla_{\theta} f(\theta)\Vert}\right\}\label{eq:clip-1}\end{equation}
或者
\begin{equation}\theta \leftarrow \theta- \eta \nabla_{\theta} f(\theta)\times \frac{\gamma}{\Vert \nabla_{\theta} f(\theta)\Vert+\gamma}\label{eq:clip-2}\end{equation}
其中$\gamma > 0$是一个常数。这两种方式都被视为梯度裁剪,总的来说就是控制更新量的模长不超过一个常数,第二种形式也跟RMSProp等自适应学习率优化器相关。此外,更精确地,我们有下面的不等式
\begin{equation}\frac{1}{2}\min\left\{1, \frac{\gamma}{\Vert \nabla_{\theta} f(\theta)\Vert}\right\}\leq \frac{\gamma}{\Vert \nabla_{\theta} f(\theta)\Vert+\gamma}\leq \min\left\{1, \frac{\gamma}{\Vert \nabla_{\theta} f(\theta)\Vert}\right\}\end{equation}
也就是说两者是可以相互控制的,所以其实两者基本是等价的。

点击阅读全文...

16 Jun

如何应对Seq2Seq中的“根本停不下来”问题?

在Seq2Seq的解码过程中,我们是逐个token地递归生成的,直到出现<eos>标记为止,这就是所谓的“自回归”生成模型。然而,研究过Seq2Seq的读者应该都能发现,这种自回归的解码偶尔会出现“根本停不下来”的现象,主要是某个片段反复出现,比如“今天天气不错不错不错不错不错...”、“你觉得我说得对不对不对不对不对不对...”等等,但就是死活不出现<eos>标记。ICML 2020的文章《Consistency of a Recurrent Language Model With Respect to Incomplete Decoding》比较系统地讨论了这个现象,并提出了一些对策,本文来简单介绍一下论文的主要内容。

解码算法

对于自回归模型来说,我们建立的是如下的条件语言模型
\begin{equation}p(y_t|y_{\lt t}, x)\label{eq:p}\end{equation}
那么解码算法就是在已知上述模型时,给定$x$来输出对应的$y=(y_1,y_2,\dots,y_T)$来。解码算法大致可以分为两类:确定性解码算法随机性解码算法,原论文分别针对这两类解码讨论来讨论了“根本停不下来”问题,所以我们需要来了解一下这两类解码算法。

点击阅读全文...