11 Nov

【外微分浅谈】7. 有力的计算

这里我们将展示上面一节的方法对于计算黎曼曲率张量的计算是多少的有力!我们再次列出我们得到的所有公式。首先是概念式的
$$\begin{aligned}&\omega^{\mu}=h_{\alpha}^{\mu}dx^{\alpha}\\
&d\boldsymbol{r}=\hat{\boldsymbol{e}}_{\mu} \omega^{\mu}\\
&ds^2 = \eta_{\mu\nu} \omega^{\mu}\omega^{\nu}\\
&\langle \hat{\boldsymbol{e}}_{\mu}, \hat{\boldsymbol{e}}_{\nu}\rangle = \eta_{\mu\nu}\end{aligned} \tag{65} $$
然后是
$$\begin{aligned}&d\eta_{\mu\nu}=\omega_{\nu\mu}+\omega_{\mu\nu}=\eta_{\nu\alpha}\omega_{\mu}^{\alpha}+\eta_{\mu \alpha}\omega_{\nu}^{\alpha}\\
&d\omega^{\mu}+\omega_{\nu}^{\mu}\land \omega^{\nu}=0\end{aligned} \tag{66} $$
这两个可以帮助我们确定$\omega_{\nu}^{\mu}$;接着就是
$$\mathscr{R}_{\nu}^{\mu} = d\omega_{\nu}^{\mu}+\omega_{\alpha}^{\mu} \land \omega_{\nu}^{\alpha} \tag{67} $$
最后你要正交标架下的$\hat{R}^{\mu}_{\nu\beta\gamma}$,就要写出:
$$\mathscr{R}_{\nu}^{\mu}=\sum_{\beta < \gamma} \hat{R}^{\mu}_{\nu\beta\gamma}\omega^{\beta}\land \omega^{\gamma} \tag{68} $$
如果你要原始标架下的$R^{\mu}_{\nu\beta\gamma}$,就要写出
$$(h^{-1})_{\mu'}^{\mu}\mathscr{R}^{\mu'}_{\nu'}h_{\nu}^{\nu'} = \sum_{\beta < \gamma} R^{\mu}_{\nu\beta\gamma}dx^{\beta}\land dx^{\gamma} \tag{69} $$
然后依次读出$R^{\mu}_{\nu\beta\gamma}$,就像制表一样。

点击阅读全文...

1 Mar

构造一个显式的、总是可逆的矩阵

《恒等式 det(exp(A)) = exp(Tr(A)) 赏析》一文我们得到矩阵$\exp(\boldsymbol{A})$总是可逆的,它的逆就是$\exp(-\boldsymbol{A})$。问题是$\exp(\boldsymbol{A})$只是一个理论定义,单纯这样写没有什么价值,因为它要把每个$\boldsymbol{A}^n$都算出来。

有没有什么具体的例子呢?有,本文来构造一个显式的、总是可逆的矩阵。

其实思路非常简单,假设$\boldsymbol{x},\boldsymbol{y}$是两个$k$维列向量,那么$\boldsymbol{x}\boldsymbol{y}^{\top}$就是一个$k\times k$的矩阵,我们就来考虑
\begin{equation}\begin{aligned}\exp\left(\boldsymbol{x}\boldsymbol{y}^{\top}\right)=&\sum_{n=0}^{\infty}\frac{\left(\boldsymbol{x}\boldsymbol{y}^{\top}\right)^n}{n!}\\
=&\boldsymbol{I}+\boldsymbol{x}\boldsymbol{y}^{\top}+\frac{\boldsymbol{x}\boldsymbol{y}^{\top}\boldsymbol{x}\boldsymbol{y}^{\top}}{2}+\frac{\boldsymbol{x}\boldsymbol{y}^{\top}\boldsymbol{x}\boldsymbol{y}^{\top}\boldsymbol{x}\boldsymbol{y}^{\top}}{6}+\dots\end{aligned}\end{equation}

点击阅读全文...

29 Sep

“让Keras更酷一些!”:层与模型的重用技巧

今天我们继续来深挖Keras,再次体验Keras那无与伦比的优雅设计。这一次我们的焦点是“重用”,主要是层与模型的重复使用。

所谓重用,一般就是奔着两个目标去:一是为了共享权重,也就是说要两个层不仅作用一样,还要共享权重,同步更新;二是避免重写代码,比如我们已经搭建好了一个模型,然后我们想拆解这个模型,构建一些子模型等。

基础

事实上,Keras已经为我们考虑好了很多,所以很多情况下,掌握好基本用法,就已经能满足我们很多需求了。

层的重用

层的重用是最简单的,将层初始化好,存起来,然后反复调用即可:

x_in = Input(shape=(784,))
x = x_in

layer = Dense(784, activation='relu') # 初始化一个层,并存起来

x = layer(x) # 第一次调用
x = layer(x) # 再次调用
x = layer(x) # 再次调用

点击阅读全文...

22 Jan

【搜出来的文本】⋅(三)基于BERT的文本采样

从这一篇开始,我们就将前面所介绍的采样算法应用到具体的文本生成例子中。而作为第一个例子,我们将介绍如何利用BERT来进行文本随机采样。所谓文本随机采样,就是从模型中随机地产生一些自然语言句子出来,通常的观点是这种随机采样是GPT2、GPT3这种单向自回归语言模型专有的功能,而像BERT这样的双向掩码语言模型(MLM)是做不到的。

事实真的如此吗?当然不是。利用BERT的MLM模型其实也可以完成文本采样,事实上它就是上一篇文章所介绍的Gibbs采样。这一事实首先由论文《BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model》明确指出。论文的标题也颇为有趣:“BERT也有嘴巴,所以它得说点什么。”现在就让我们看看BERT究竟能说出什么来~

点击阅读全文...

11 Apr

熵不变性Softmax的一个快速推导

在文章《从熵不变性看Attention的Scale操作》中,我们推导了一版具有熵不变性质的注意力机制:
\begin{equation}Attention(Q,K,V) = softmax\left(\frac{\kappa \log n}{d}QK^{\top}\right)V\label{eq:a}\end{equation}
可以观察到,它主要是往Softmax里边引入了长度相关的缩放因子$\log n$来实现的。原来的推导比较繁琐,并且做了较多的假设,不利于直观理解,本文为其补充一个相对简明快速的推导。

推导过程

我们可以抛开注意力机制的背景,直接设有$s_1,s_2,\cdots,s_n\in\mathbb{R}$,定义
$$p_i = \frac{e^{\lambda s_i}}{\sum\limits_{i=1}^n e^{\lambda s_i}}$$

点击阅读全文...

8 Jun

Naive Bayes is all you need ?

很抱歉,起了这么个具有标题党特征的题目。在写完《NBCE:使用朴素贝叶斯扩展LLM的Context处理长度》之后,笔者就觉得朴素贝叶斯(Naive Bayes)跟Attention机制有很多相同的特征,后来再推导了一下发现,Attention机制其实可以看成是一种广义的、参数化的朴素贝叶斯。既然如此,“Attention is All You Need”不也就意味着“Naive Bayes is all you need”了?这就是本文标题的缘由。

接下来笔者将介绍自己的思考过程,分析如何从朴素贝叶斯角度来理解Attention机制。

朴素贝叶斯

本文主要考虑语言模型,它要建模的是$p(x_t|x_1,\cdots,x_{t-1})$。根据贝叶斯公式,我们有
\begin{equation}p(x_t|x_1,\cdots,x_{t-1}) = \frac{p(x_1,\cdots,x_{t-1}|x_t)p(x_t)}{p(x_1,\cdots,x_{t-1})}\propto p(x_1,\cdots,x_{t-1}|x_t)p(x_t)\end{equation}

点击阅读全文...