29 Dec

SquarePlus:可能是运算最简单的ReLU光滑近似

ReLU函数,也就是$\max(x,0)$,是最常见的激活函数之一,然而它在$x=0$处的不可导通常也被视为一个“槽点”。为此,有诸多的光滑近似被提出,比如SoftPlus、GeLU、Swish等,不过这些光滑近似无一例外地至少都使用了指数运算$e^x$(SoftPlus还用到了对数),从“精打细算”的角度来看,计算量还是不小的(虽然当前在GPU加速之下,我们很少去感知这点计算量了)。最近有一篇论文《Squareplus: A Softplus-Like Algebraic Rectifier》提了一个更简单的近似,称为SquarePlus,我们也来讨论讨论。

需要事先指出的是,笔者是不建议大家花太多时间在激活函数的选择和设计上的,所以虽然分享了这篇论文,但主要是提供一个参考结果,并充当一道练习题来给大家“练练手”。

定义

SquarePlus的形式很简单,只用到了加、乘、除和开方:
\begin{equation}\text{SquarePlus}(x)=\frac{x+\sqrt{x^2+b}}{2}\end{equation}

点击阅读全文...

25 Jan

Efficient GlobalPointer:少点参数,多点效果

《GlobalPointer:用统一的方式处理嵌套和非嵌套NER》中,我们提出了名为“GlobalPointer”的token-pair识别模块,当它用于NER时,能统一处理嵌套和非嵌套任务,并在非嵌套场景有着比CRF更快的速度和不逊色于CRF的效果。换言之,就目前的实验结果来看,至少在NER场景,我们可以放心地将CRF替换为GlobalPointer,而不用担心效果和速度上的损失。

在这篇文章中,我们提出GlobalPointer的一个改进版——Efficient GlobalPointer,它主要针对原GlobalPointer参数利用率不高的问题进行改进,明显降低了GlobalPointer的参数量。更有趣的是,多个任务的实验结果显示,参数量更少的Efficient GlobalPointer反而还取得更好的效果。

大量的参数

这里简单回顾一下GlobalPointer,详细介绍则请读者阅读《GlobalPointer:用统一的方式处理嵌套和非嵌套NER》。简单来说,GlobalPointer是基于内积的token-pair识别模块,它可以用于NER场景,因为对于NER来说我们只需要把每一类实体的“(首, 尾)”这样的token-pair识别出来就行了。

点击阅读全文...

30 Jan

GPLinker:基于GlobalPointer的实体关系联合抽取

在将近三年前的百度“2019语言与智能技术竞赛”(下称LIC2019)中,笔者提出了一个新的关系抽取模型(参考《基于DGCNN和概率图的轻量级信息抽取模型》),后被进一步发表和命名为“CasRel”,算是当时关系抽取的SOTA。然而,CasRel提出时笔者其实也是首次接触该领域,所以现在看来CasRel仍有诸多不完善之处,笔者后面也有想过要进一步完善它,但也没想到特别好的设计。

后来,笔者提出了GlobalPointer以及近日的Efficient GlobalPointer,感觉有足够的“材料”来构建新的关系抽取模型了。于是笔者从概率图思想出发,参考了CasRel之后的一些SOTA设计,最终得到了一版类似TPLinker的模型。

基础思路

关系抽取乍看之下是三元组$(s,p,o)$(即subject, predicate, object)的抽取,但落到具体实现上,它实际是“五元组”$(s_h,s_t,p,o_h,o_t)$的抽取,其中$s_h,s_t$分别是$s$的首、尾位置,而$o_h,o_t$则分别是$o$的首、尾位置。

点击阅读全文...

3 Mar

指数梯度下降 + 元学习 = 自适应学习率

前两天刷到了Google的一篇论文《Step-size Adaptation Using Exponentiated Gradient Updates》,在其中学到了一些新的概念,所以在此记录分享一下。主要的内容有两个,一是非负优化的指数梯度下降,二是基于元学习思想的学习率调整算法,两者都颇有意思,有兴趣的读者也可以了解一下。

指数梯度下降

梯度下降大家可能听说得多了,指的是对于无约束函数$\mathcal{L}(\boldsymbol{\theta})$的最小化,我们用如下格式进行更新:
\begin{equation}\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \eta\nabla_{\boldsymbol{\theta}}\mathcal{L}(\boldsymbol{\theta}_t)\end{equation}
其中$\eta$是学习率。然而很多任务并非总是无约束的,对于最简单的非负约束,我们可以改为如下格式更新:
\begin{equation}\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t \odot \exp\left(- \eta\nabla_{\boldsymbol{\theta}}\mathcal{L}(\boldsymbol{\theta}_t)\right)\label{eq:egd}\end{equation}
这里的$\odot$是逐位对应相乘(Hadamard积)。容易看到,只要初始化的$\boldsymbol{\theta}_0$是非负的,那么在整个更新过程中$\boldsymbol{\theta}_t$都会保持非负,这就是用于非负约束优化的“指数梯度下降”。

点击阅读全文...

11 Mar

门控注意力单元(GAU)还需要Warmup吗?

在文章《训练1000层的Transformer究竟有什么困难?》发布之后,很快就有读者问到如果将其用到《FLASH:可能是近来最有意思的高效Transformer设计》中的“门控注意力单元(GAU)”,那结果是怎样的?跟标准Transformer的结果有何不同?本文就来讨论这个问题。

先说结论

事实上,GAU是非常容易训练的模型,哪怕我们不加调整地直接使用“Post Norm + Xavier初始化”,也能轻松训练个几十层的GAU,并且还不用Warmup。所以关于标准Transformer的很多训练技巧,到了GAU这里可能就无用武之地了...

为什么GAU能做到这些?很简单,因为在默认设置之下,理论上$\text{GAU}(\boldsymbol{x}_l)$相比$\boldsymbol{x}_l$几乎小了两个数量级,所以
\begin{equation}\boldsymbol{x}_{l+1} = \text{LN}(\boldsymbol{x}_l + \text{GAU}(\boldsymbol{x}_l))\approx \boldsymbol{x}_l\end{equation}

点击阅读全文...

29 Mar

为什么Pre Norm的效果不如Post Norm?

Pre Norm与Post Norm之间的对比是一个“老生常谈”的话题了,本博客就多次讨论过这个问题,比如文章《浅谈Transformer的初始化、参数化与标准化》《模型优化漫谈:BERT的初始标准差为什么是0.02?》等。目前比较明确的结论是:同一设置之下,Pre Norm结构往往更容易训练,但最终效果通常不如Post Norm。Pre Norm更容易训练好理解,因为它的恒等路径更突出,但为什么它效果反而没那么好呢?

笔者之前也一直没有好的答案,直到前些时间在知乎上看到 @唐翔昊 的一个回复后才“恍然大悟”,原来这个问题竟然有一个非常直观的理解!本文让我们一起来学习一下。

点击阅读全文...

7 Apr

听说Attention与Softmax更配哦~

不知道大家留意到一个细节没有,就是当前NLP主流的预训练模式都是在一个固定长度(比如512)上进行,然后直接将预训练好的模型用于不同长度的任务中。大家似乎也没有对这种模式有过怀疑,仿佛模型可以自动泛化到不同长度是一个“理所应当”的能力。

当然,笔者此前同样也没有过类似的质疑,直到前几天笔者做了Base版的GAU实验后才发现GAU的长度泛化能力并不如想象中好。经过进一步分析后,笔者才明白原来这种长度泛化的能力并不是“理所当然”的......

模型回顾

《FLASH:可能是近来最有意思的高效Transformer设计》中,我们介绍了“门控注意力单元GAU”,它是一种融合了GLU和Attention的新设计。

除了效果,GAU在设计上给我们带来的冲击主要有两点:一是它显示了单头注意力未必就逊色于多头注意力,这奠定了它“快”、“省”的地位;二是它是显示了注意力未必需要Softmax归一化,可以换成简单的$\text{relu}^2$除以序列长度:
\begin{equation}\boldsymbol{A}=\frac{1}{n}\text{relu}^2\left(\frac{\mathcal{Q}(\boldsymbol{Z})\mathcal{K}(\boldsymbol{Z})^{\top}}{\sqrt{s}}\right)=\frac{1}{ns}\text{relu}^2\left(\mathcal{Q}(\boldsymbol{Z})\mathcal{K}(\boldsymbol{Z})^{\top}\right)\end{equation}

点击阅读全文...

7 May

多标签“Softmax+交叉熵”的软标签版本

(注:本文的相关内容已整理成论文《ZLPR: A Novel Loss for Multi-label Classification》,如需引用可以直接引用英文论文,谢谢。)

《将“Softmax+交叉熵”推广到多标签分类问题》中,我们提出了一个用于多标签分类的损失函数:
\begin{equation}\log \left(1 + \sum\limits_{i\in\Omega_{neg}} e^{s_i}\right) + \log \left(1 + \sum\limits_{j\in\Omega_{pos}} e^{-s_j}\right)\label{eq:original}\end{equation}
这个损失函数有着单标签分类中“Softmax+交叉熵”的优点,即便在正负类不平衡的依然能够有效工作。但从这个损失函数的形式我们可以看到,它只适用于“硬标签”,这就意味着label smoothing、mixup等技巧就没法用了。本文则尝试解决这个问题,提出上述损失函数的一个软标签版本。

巧妙联系

多标签分类的经典方案就是转化为多个二分类问题,即每个类别用sigmoid函数$\sigma(x)=1/(1+e^{-x})$激活,然后各自用二分类交叉熵损失。当正负类别极其不平衡时,这种做法的表现通常会比较糟糕,而相比之下损失$\eqref{eq:original}$通常是一个更优的选择。

点击阅读全文...