29 Jul

基于GRU和AM-Softmax的句子相似度模型

搞计算机视觉的朋友会知道,AM-Softmax是人脸识别中的成果。所以这篇文章就是借鉴人脸识别的做法来做句子相似度模型,顺便介绍在Keras下各种margin loss的写法。

背景

细想之下会发现,句子相似度与人脸识别有很多的相似之处~

已有的做法

在我搜索到的资料中,深度学习做句子相似度模型,就只有两种做法:一是输入一对句子,然后输出一个0/1标签代表相似程度,也就是视为一个二分类问题,比如《Learning Text Similarity with Siamese Recurrent Networks》中的模型是这样的

将句子相似度视为二分类模型

将句子相似度视为二分类模型

包括今年拍拍贷的“魔镜杯”,也是这种格式。另外一种做法是输入一个三元组“(句子A,跟A相似的句子,跟A不相似的句子)”,然后用triplet loss的做法解决,比如文章《Applying Deep Learning To Answer Selection: A Study And An Open Task》中的做法。

这两种做法其实也可以看成是一种,本质上是一样的,只不过loss和训练方法有所差别。但是,这两种方法却都有一个很严重的问题:负样本采样严重不足,导致效果提升非常慢。

点击阅读全文...

18 Jul

用变分推断统一理解生成模型(VAE、GAN、AAE、ALI)

前言:我小学开始就喜欢纯数学,后来也喜欢上物理,还学习过一段时间的理论物理,直到本科毕业时,我才慢慢进入机器学习领域。所以,哪怕在机器学习领域中,我的研究习惯还保留着数学和物理的风格:企图从最少的原理出发,理解、推导尽可能多的东西。这篇文章是我这个理念的结果之一,试图以变分推断作为出发点,来统一地理解深度学习中的各种模型,尤其是各种让人眼花缭乱的GAN。本文已经挂到arxiv上,需要读英文原稿的可以移步到《Variational Inference: A Unified Framework of Generative Models and Some Revelations》

下面是文章的介绍。其实,中文版的信息可能还比英文版要稍微丰富一些,原谅我这蹩脚的英语...

摘要:本文从一种新的视角阐述了变分推断,并证明了EM算法、VAE、GAN、AAE、ALI(BiGAN)都可以作为变分推断的某个特例。其中,论文也表明了标准的GAN的优化目标是不完备的,这可以解释为什么GAN的训练需要谨慎地选择各个超参数。最后,文中给出了一个可以改善这种不完备性的正则项,实验表明该正则项能增强GAN训练的稳定性。

近年来,深度生成模型,尤其是GAN,取得了巨大的成功。现在我们已经可以找到数十个乃至上百个GAN的变种。然而,其中的大部分都是凭着经验改进的,鲜有比较完备的理论指导。

本文的目标是通过变分推断来给这些生成模型建立一个统一的框架。首先,本文先介绍了变分推断的一个新形式,这个新形式其实在博客以前的文章中就已经介绍过,它可以让我们在几行字之内导出变分自编码器(VAE)和EM算法。然后,利用这个新形式,我们能直接导出GAN,并且发现标准GAN的loss实则是不完备的,缺少了一个正则项。如果没有这个正则项,我们就需要谨慎地调整超参数,才能使得模型收敛。

点击阅读全文...

6 Aug

“让Keras更酷一些!”:精巧的层与花式的回调

Keras伴我走来

回想起进入机器学习领域的这两三年来,Keras是一直陪伴在笔者的身边。要不是当初刚掉进这个坑时碰到了Keras这个这么易用的框架,能快速实现我的想法,我也不确定我是否能有毅力坚持下来,毕竟当初是theano、pylearn、caffe、torch等的天下,哪怕在今天它们对我来说仍然像天书一般。

后来为了拓展视野,我也去学习了一段时间的tensorflow,用纯tensorflow写过若干程序,但不管怎样,仍然无法割舍Keras。随着对Keras的了解的深入,尤其是花了一点时间研究过Keras的源码后,我发现Keras并没有大家诟病的那样“欠缺灵活性”。事实上,Keras那精巧的封装,可以让我们轻松实现很多复杂的功能。我越来越感觉,Keras像是一件非常精美的艺术品,充分体现了Keras的开发者们深厚的创作功力。

本文介绍Keras中自定义模型的一些内容,相对而言,这属于Keras进阶的内容,刚入门的朋友请暂时忽略。

层的自定义

这里介绍Keras中自定义层及其一些运用技巧,在这之中我们可以看到Keras层的精巧之处。

点击阅读全文...

1 Sep

玩转Keras之seq2seq自动生成标题

话说自称搞了这么久的NLP,我都还没有真正跑过NLP与深度学习结合的经典之作——seq2seq。这两天兴致来了,决定学习并实践一番seq2seq,当然最后少不了Keras实现了。

seq2seq可以做的事情非常多,我这挑选的是比较简单的根据文章内容生成标题(中文),也可以理解为自动摘要的一种。选择这个任务主要是因为“文章-标题”这样的语料对比较好找,能快速实验一下。

seq2seq简介

所谓seq2seq,就是指一般的序列到序列的转换任务,比如机器翻译、自动文摘等等,这种任务的特点是输入序列和输出序列是不对齐的,如果对齐的话,那么我们称之为序列标注,这就比seq2seq简单很多了。所以尽管序列标注任务也可以理解为序列到序列的转换,但我们在谈到seq2seq时,一般不包含序列标注。

要自己实现seq2seq,关键是搞懂seq2seq的原理和架构,一旦弄清楚了,其实不管哪个框架实现起来都不复杂。早期有一个第三方实现的Keras的seq2seq库,现在作者也已经放弃更新了,也许就是觉得这么简单的事情没必要再建一个库了吧。可以参考的资料还有去年Keras官方博客中写的《A ten-minute introduction to sequence-to-sequence learning in Keras》

点击阅读全文...

8 Sep

“让Keras更酷一些!”:小众的自定义优化器

沿着之前的《“让Keras更酷一些!”:精巧的层与花式的回调》写下去~

今天我们来看一个小众需求:自定义优化器。

细想之下,不管用什么框架,自定义优化器这个需求可谓真的是小众中的小众。一般而言,对于大多数任务我们都可以无脑地直接上Adam,而调参炼丹高手一般会用SGD来调出更好的效果,换言之不管是高手新手,都很少会有自定义优化器的需求。

那这篇文章还有什么价值呢?有些场景下会有一点点作用。比如通过学习Keras中的优化器写法,你可以对梯度下降等算法有进一步的认识,你还可以顺带看到Keras的源码是多么简洁优雅。此外,有时候我们可以通过自定义优化器来实现自己的一些功能,比如给一些简单的模型(例如Word2Vec)重写优化器(直接写死梯度,而不是用自动求导),可以使得算法更快;自定义优化器还可以实现诸如“软batch”的功能。

Keras优化器

我们首先来看Keras中自带优化器的代码,位于:
https://github.com/keras-team/keras/blob/master/keras/optimizers.py

点击阅读全文...

7 Oct

深度学习中的Lipschitz约束:泛化与生成模型

前言:去年写过一篇WGAN-GP的入门读物《互怼的艺术:从零直达WGAN-GP》,提到通过梯度惩罚来为WGAN的判别器增加Lipschitz约束(下面简称“L约束”)。前几天遐想时再次想到了WGAN,总觉得WGAN的梯度惩罚不够优雅,后来也听说WGAN在条件生成时很难搞(因为不同类的随机插值就开始乱了...),所以就想琢磨一下能不能搞出个新的方案来给判别器增加L约束。

闭门造车想了几天,然后发现想出来的东西别人都已经做了,果然是只有你想不到,没有别人做不到。主要包含在这两篇论文中:《Spectral Norm Regularization for Improving the Generalizability of Deep Learning》《Spectral Normalization for Generative Adversarial Networks》

所以这篇文章就按照自己的理解思路,对L约束相关的内容进行简单的介绍。注意本文的主题是L约束,并不只是WGAN。它可以用在生成模型中,也可以用在一般的监督学习中。

L约束与泛化

扰动敏感

记输入为$x$,输出为$y$,模型为$f$,模型参数为$w$,记为
$$\begin{equation}y = f_w(x)\end{equation}$$
很多时候,我们希望得到一个“稳健”的模型。何为稳健?一般来说有两种含义,一是对于参数扰动的稳定性,比如模型变成了$f_{w+\Delta w}(x)$后是否还能达到相近的效果?如果在动力学系统中,还要考虑模型最终是否能恢复到$f_w(x)$;二是对于输入扰动的稳定性,比如输入从$x$变成了$x+\Delta x$后,$f_w(x+\Delta x)$是否能给出相近的预测结果。读者或许已经听说过深度学习模型存在“对抗攻击样本”,比如图片只改变一个像素就给出完全不一样的分类结果,这就是模型对输入过于敏感的案例。

点击阅读全文...

29 Nov

Dropout视角下的MLM和MAE:一些新的启发

大家都知道,BERT的MLM(Masked Language Model)任务在预训练和微调时的不一致,也就是预训练出现了[MASK]而下游任务微调时没有[MASK],是经常被吐槽的问题,很多工作都认为这是影响BERT微调性能的重要原因,并针对性地提出了很多改进,如XL-NETELECTRAMacBERT等。本文我们将从Dropout的角度来分析MLM的这种不一致性,并且提出一种简单的操作来修正这种不一致性。

同样的分析还可以用于何凯明最近提出的比较热门的MAE(Masked Autoencoder)模型,结果是MAE相比MLM确实具有更好的一致性,由此我们可以引出一种可以能加快训练速度的正则化手段。

Dropout

首先,我们重温一下Dropout。从数学上来看,Dropout是通过伯努利分布来为模型引入随机噪声的操作,所以我们也简单复习一下伯努利分布。

点击阅读全文...

10 Dec

BiGAN-QP:简单清晰的编码&生成模型

前不久笔者通过直接在对偶空间中分析的思路,提出了一个称为GAN-QP的对抗模型框架,它的特点是可以从理论上证明既不会梯度消失,又不需要L约束,使得生成模型的搭建和训练都得到简化。

GAN-QP是一个对抗框架,所以理论上原来所有的GAN任务都可以往上面试试。前面《不用L约束又不会梯度消失的GAN,了解一下?》一文中我们只尝试了标准的随机生成任务,而这篇文章中我们尝试既有生成器、又有编码器的情况:BiGAN-QP。

BiGAN与BiGAN-QP

注意这是BiGAN,不是前段时间很火的BigGAN,BiGAN是双向GAN(Bidirectional GAN),提出于《Adversarial feature learning》一文,同期还有一篇非常相似的文章叫做《Adversarially Learned Inference》,提出了叫做ALI的模型,跟BiGAN差不多。总的来说,它们都是往普通的GAN模型中加入了编码器,使得模型既能够具有普通GAN的随机生成功能,又具有编码器的功能,可以用来提取有效的特征。把GAN-QP这种对抗模式用到BiGAN中,就得到了BiGAN-QP。

话不多说,先来上效果图(左边是原图,右边是重构):

BiGAN-QP重构效果图

BiGAN-QP重构效果图

点击阅读全文...