Muon续集:为什么我们选择尝试Muon?
By 苏剑林 | 2025-02-27 | 87101位读者 | 引用本文解读一下我们最新的技术报告《Muon is Scalable for LLM Training》,里边分享了我们之前在《Muon优化器赏析:从向量到矩阵的本质跨越》介绍过的Muon优化器的一次较大规模的实践,并开源了相应的模型(我们称之为“Moonlight”,目前是一个3B/16B的MoE模型)。我们发现了一个比较惊人的结论:在我们的实验设置下,Muon相比Adam能够达到将近2倍的训练效率。
优化器的工作说多不多,但说少也不少,为什么我们会选择Muon来作为新的尝试方向呢?已经调好超参的Adam优化器,怎么快速切换到Muon上进行尝试呢?模型Scale上去之后,Muon与Adam的性能效果差异如何?接下来将分享我们的思考过程。
MoE环游记:2、不患寡而患不均
By 苏剑林 | 2025-02-21 | 76718位读者 | 引用在上一篇文章《MoE环游记:1、从几何意义出发》中,我们介绍了MoE的一个几何诠释,旨在通过Dense模型的最佳逼近出发来推导和理解MoE。同时在文末我们也说了,给出MoE的计算公式仅仅是开始,训练一个实际有效的MoE模型还有很多细节补,比如本文要讨论的负载均衡(Load Balance)问题。
负载均衡,即“不患寡而患不均”,说白了就是让每个Expert都在干活,并且都在干尽可能一样多的活,避免某些Expert浪费算力。负载均衡既是充分利用训练算力的需求,也是尽可能发挥MoE大参数量潜力的需求。
需求分析
我们知道,MoE的基本形式是
\begin{equation}\boldsymbol{y} = \sum_{i\in \mathop{\text{argtop}}_k \boldsymbol{\rho}} \rho_i \boldsymbol{e}_i\end{equation}
生成扩散模型漫谈(二十九):用DDPM来离散编码
By 苏剑林 | 2025-02-14 | 63132位读者 | 引用笔者前两天在arXiv刷到了一篇新论文《Compressed Image Generation with Denoising Diffusion Codebook Models》,实在为作者的天马行空所叹服,忍不住来跟大家分享一番。
如本文标题所述,作者提出了一个叫DDCM(Denoising Diffusion Codebook Models)的脑洞,它把DDPM的噪声采样限制在一个有限的集合上,然后就可以实现一些很奇妙的效果,比如像VQVAE一样将样本编码为离散的ID序列并重构回来。注意这些操作都是在预训练好的DDPM上进行的,无需额外的训练。
有限集合
由于DDCM只需要用到一个预训练好的DDPM模型来执行采样,所以这里我们就不重复介绍DDPM的模型细节了,对DDPM还不大了解的读者可以回顾我们《生成扩散模型漫谈》系列的(一)、(二)、(三)篇。
MoE环游记:1、从几何意义出发
By 苏剑林 | 2025-02-08 | 143927位读者 | 引用前两年福至心灵之下,开了一个“Transformer升级之路”系列,陆续分享了主流Transformer架构的一些改进工作和个人思考,得到了部份读者的认可。这篇文章开始,我们沿着同样的风格,介绍当前另一个主流架构MoE(Mixture of Experts)。
MoE的流行自不必多说,近来火出圈的DeepSeek-V3便是MoE架构,传言GPT-4也是MoE架构,国内最近出的一些模型也有不少用上了MoE。然而,虽然MoE的研究由来已久,但其应用长时间内都不愠不火,大致上是从去年初的《Mixtral of Experts》开始,MoE才逐渐吸引大家的注意力,其显著优点是参数量大,但训练和推理成本都显著低。
但同时MoE也有一些难题,如训练不稳定、负载不均衡、效果不够好等,这也是它早年没有流行起来的主要原因。不过随着这两年关注度的提升,这些问题在很大程度上已经得到解决,我们在接下来的介绍中会逐一谈到这些内容。
细水长flow之TARFLOW:流模型满血归来?
By 苏剑林 | 2025-01-17 | 66633位读者 | 引用不知道还有没有读者对这个系列有印象?这个系列取名“细水长flow”,主要介绍flow模型的相关工作,起因是当年(2018年)OpenAI发布了一个新的流模型Glow,在以GAN为主流的当时来说着实让人惊艳了一番。但惊艳归惊艳,事实上在相当长的时间内,Glow及后期的一些改进在生成效果方面都是比不上GAN的,更不用说现在主流的扩散模型了。
不过局面可能要改变了,上个月的论文《Normalizing Flows are Capable Generative Models》提出了新的流模型TARFLOW,它在几乎在所有的生成任务效果上都逼近了当前SOTA,可谓是流模型的“满血”回归。
为什么梯度裁剪的默认模长是1?
By 苏剑林 | 2025-01-02 | 82956位读者 | 引用我们知道,梯度裁剪(Gradient Clipping)是让模型训练更加平稳的常用技巧。常用的梯度裁剪是根据所有参数的梯度总模长来对梯度进行裁剪,其运算可以表示为
\begin{equation}\text{clip}(\boldsymbol{g},\tau)=\left\{\begin{aligned}&\boldsymbol{g}, &\Vert\boldsymbol{g}\Vert\leq \tau \\
&\frac{\tau}{\Vert\boldsymbol{g}\Vert}\boldsymbol{g},&\Vert\boldsymbol{g}\Vert > \tau
\end{aligned}\right.\end{equation}
这样一来,$\text{clip}(\boldsymbol{g},\tau)$保持跟$\boldsymbol{g}$相同的方向,但模长不超过$\tau$。注意这里的$\Vert\boldsymbol{g}\Vert$是整个模型所有的参数梯度放在一起视为单个向量所算的模长,也就是所谓的Global Gradient Norm。
不知道大家有没有留意到一个细节:不管是数百万参数还是数百亿参数的模型,$\tau$的取值在很多时候都是1。这意味着什么呢?是单纯地复用默认值,还是背后隐含着什么深刻的原理呢?
从谱范数梯度到新式权重衰减的思考
By 苏剑林 | 2024-12-25 | 31264位读者 | 引用在文章《Muon优化器赏析:从向量到矩阵的本质跨越》中,我们介绍了一个名为“Muon”的新优化器,其中一个理解视角是作为谱范数正则下的最速梯度下降,这似乎揭示了矩阵参数的更本质的优化方向。众所周知,对于矩阵参数我们经常也会加权重衰减(Weight Decay),它可以理解为$F$范数平方的梯度,那么从Muon的视角看,通过谱范数平方的梯度来构建新的权重衰减,会不会能起到更好的效果呢?
那么问题来了,谱范数的梯度或者说导数长啥样呢?用它来设计的新权重衰减又是什么样的?接下来我们围绕这些问题展开。
基础回顾
谱范数(Spectral Norm),又称“$2$范数”,是最常用的矩阵范数之一,相比更简单的$F$范数(Frobenius Norm),它往往能揭示一些与矩阵乘法相关的更本质的信号,这是因为它定义上就跟矩阵乘法相关:对于矩阵参数$\boldsymbol{W}\in\mathbb{R}^{n\times m}$,它的谱范数定义为
生成扩散模型漫谈(二十八):分步理解一致性模型
By 苏剑林 | 2024-12-18 | 63622位读者 | 引用书接上文,在《生成扩散模型漫谈(二十七):将步长作为条件输入》中,我们介绍了加速采样的Shortcut模型,其对比的模型之一就是“一致性模型(Consistency Models)”。事实上,早在《生成扩散模型漫谈(十七):构建ODE的一般步骤(下)》介绍ReFlow时,就有读者提到了一致性模型,但笔者总感觉它更像是实践上的Trick,理论方面略显单薄,所以兴趣寥寥。
不过,既然我们开始关注扩散模型加速采样方面的进展,那么一致性模型就是一个绕不开的工作。因此,趁着这个机会,笔者在这里分享一下自己对一致性模型的理解。
熟悉配方
还是熟悉的配方,我们的出发点依旧是ReFlow,因为它大概是ODE式扩散最简单的理解方式。设$\boldsymbol{x}_0\sim p_0(\boldsymbol{x}_0)$是目标分布的真实样本,$\boldsymbol{x}_1\sim p_1(\boldsymbol{x}_1)$是先验分布的随机噪声,$\boldsymbol{x}_t = (1-t)\boldsymbol{x}_0 + t\boldsymbol{x}_1$是加噪样本,那么ReFlow的训练目标是:










最近评论