20 Jul

语言模型输出端共享Embedding的重新探索

预训练刚兴起时,在语言模型的输出端重用Embedding权重是很常见的操作,比如BERT、第一版的T5、早期的GPT,都使用了这个操作,这是因为当模型主干部分不大且词表很大时,Embedding层的参数量很可观,如果输出端再新增一个独立的同样大小的权重矩阵的话,会导致显存消耗的激增。不过随着模型参数规模的增大,Embedding层的占比相对变小了,加之《Rethinking embedding coupling in pre-trained language models》等研究表明共享Embedding可能会有些负面影响,所以现在共享Embedding的做法已经越来越少了。

本文旨在分析在共享Embedding权重时可能遇到的问题,并探索如何更有效地进行初始化和参数化。尽管共享Embedding看起来已经“过时”,但这依然不失为一道有趣的研究题目。

点击阅读全文...

14 Jul

当生成模型肆虐:互联网将有“疯牛病”之忧?

众所周知,不管是文本还是视觉领域,各种生成模型正在以无法阻挡的势头“肆虐”互联网。虽然大家都明白,实现真正的通用人工智能(AGI)还有很长的路要走,但这并不妨碍人们越来越频繁地利用生成模型来创作和分享内容。君不见,很多网络文章已经配上了Stable Diffusion模型生成的插图;君不见,很多新闻风格已经越来越显现出ChatGPT的影子。看似无害的这种趋势,正悄然引发了一个问题:我们是否应该对互联网上充斥的生成模型数据保持警惕?

近期发表的论文《Self-Consuming Generative Models Go MAD》揭示了一种令人担忧的可能性,那就是生成模型正在互联网上的无节制扩张,可能会导致一场数字版的“疯牛病”疫情。本文一起学习这篇论文,探讨其可能带来的影响。

点击阅读全文...

6 Jul

Transformer升级之路:10、RoPE是一种β进制编码

对关心如何扩展LLM的Context长度的读者来说,上周无疑是激动人心的一周,开源社区接连不断地出现令人振奋的成果。首先,网友@kaiokendev在他的项目SuperHOT中实验了“位置线性内插”的方案,显示通过非常少的长文本微调,就可以让已有的LLM处理Long Context。几乎同时,Meta也提出了同样的思路,带着丰富的实验结果发表在论文《Extending Context Window of Large Language Models via Positional Interpolation》上。惊喜还远不止此,随后网友@bloc97提出了NTK-aware Scaled RoPE,实现了不用微调就可以扩展Context长度的效果!

以上种种进展,尤其是NTK-aware Scaled RoPE,迫使笔者去重新思考RoPE的含义。经过分析,笔者发现RoPE的构造可以视为一种$\beta$进制编码,在这个视角之下,开源社区的这些进展可以理解为对进制编码编码的不同扩增方式。

点击阅读全文...

28 Jun

生成扩散模型漫谈(二十):从ReFlow到WGAN-GP

上一篇文章《生成扩散模型漫谈(十九):作为扩散ODE的GAN》中,我们介绍了如何将GAN理解为在另一个时间维度上的扩散ODE,简而言之,GAN实际上就是将扩散模型中样本的运动转化为生成器参数的运动!然而,该文章的推导过程依赖于Wasserstein梯度流等相对复杂和独立的内容,没法很好地跟扩散系列前面的文章连接起来,技术上显得有些“断层”。

在笔者看来,《生成扩散模型漫谈(十七):构建ODE的一般步骤(下)》所介绍的ReFlow是理解扩散ODE的最直观方案,既然可以从扩散ODE的角度理解GAN,那么必定存在一个从ReFlow理解GAN的角度。经过一番尝试,笔者成功从ReFlow推出了类似WGAN-GP的结果。

理论回顾

之所以说“ReFlow是理解扩散ODE的最直观方案”,是因为它本身非常灵活,以及非常贴近实验代码——它能够通过ODE建立任意噪声分布到目标数据分布的映射,而且训练目标非常直观,不需要什么“弯弯绕绕”就可以直接跟实验代码对应起来。

点击阅读全文...

24 Jun

生成扩散模型漫谈(十九):作为扩散ODE的GAN

在文章《生成扩散模型漫谈(十六):W距离 ≤ 得分匹配》中,我们推导了Wasserstein距离与扩散模型得分匹配损失之间的一个不等式,表明扩散模型的优化目标与WGAN的优化目标在某种程度上具有相似性。而在本文,我们将探讨《MonoFlow: Rethinking Divergence GANs via the Perspective of Wasserstein Gradient Flows》中的研究成果,它进一步展示了GAN与扩散模型之间的联系:GAN实际上可以被视为在另一个时间维度上的扩散ODE!

这些发现表明,尽管GAN和扩散模型表面上是两种截然不同的生成式模型,但它们实际上存在许多相似之处,并在许多方面可以相互借鉴和参考。

思路简介

我们知道,GAN所训练的生成器是从噪声$\boldsymbol{z}$到真实样本的一个直接的确定性变换$\boldsymbol{g}_{\boldsymbol{\theta}}(\boldsymbol{z})$,而扩散模型的显著特点是“渐进式生成”,它的生成过程对应于从一系列渐变的分布$p_0(\boldsymbol{x}_0),p_1(\boldsymbol{x}_1),\cdots,p_T(\boldsymbol{x}_T)$中采样(注:在前面十几篇文章中,$\boldsymbol{x}_T$是噪声,$\boldsymbol{x}_0$是目标样本,采样过程是$\boldsymbol{x}_T\to \boldsymbol{x}_0$,但为了便于下面的表述,这里反过来改为$\boldsymbol{x}_0\to \boldsymbol{x}_T$)。看上去确实找不到多少相同之处,那怎么才能将两者联系起来呢?

点击阅读全文...

8 Jun

Naive Bayes is all you need ?

很抱歉,起了这么个具有标题党特征的题目。在写完《NBCE:使用朴素贝叶斯扩展LLM的Context处理长度》之后,笔者就觉得朴素贝叶斯(Naive Bayes)跟Attention机制有很多相同的特征,后来再推导了一下发现,Attention机制其实可以看成是一种广义的、参数化的朴素贝叶斯。既然如此,“Attention is All You Need”不也就意味着“Naive Bayes is all you need”了?这就是本文标题的缘由。

接下来笔者将介绍自己的思考过程,分析如何从朴素贝叶斯角度来理解Attention机制。

朴素贝叶斯

本文主要考虑语言模型,它要建模的是$p(x_t|x_1,\cdots,x_{t-1})$。根据贝叶斯公式,我们有
\begin{equation}p(x_t|x_1,\cdots,x_{t-1}) = \frac{p(x_1,\cdots,x_{t-1}|x_t)p(x_t)}{p(x_1,\cdots,x_{t-1})}\propto p(x_1,\cdots,x_{t-1}|x_t)p(x_t)\end{equation}

点击阅读全文...

31 May

关于NBCE方法的一些补充说明和分析

上周在《NBCE:使用朴素贝叶斯扩展LLM的Context处理长度》中,我们介绍了一种基于朴素贝叶斯来扩展LLM的Context长度的方案NBCE(Naive Bayes-based Context Extension)。由于它有着即插即用、模型无关、不用微调等优点,也获得了一些读者的认可,总的来说目前大家反馈的测试效果还算可以。

当然,部分读者在使用的时候也提出了一些问题。本文就结合读者的疑问和笔者的后续思考,对NBCE方法做一些补充说明和分析。

方法回顾

假设$T$为要生成的token序列,$S_1,S_2,\cdots,S_n$是给定的若干个Context,我们需要根据$S_1,S_2,\cdots,S_n$生成$T$,那么就需要估计$p(T|S_1, S_2,\cdots,S_n)$。根据朴素贝叶斯思想,我们得到
\begin{equation}\log p(T|S_1, S_2,\cdots,S_n) = \color{red}{(\beta + 1)\overline{\log p(T|S)}} - \color{green}{\beta\log p(T)} + \color{skyblue}{\text{常数}}\label{eq:nbce-2}\end{equation}

点击阅读全文...

23 May

NBCE:使用朴素贝叶斯扩展LLM的Context处理长度

在LLM时代还玩朴素贝叶斯(Naive Bayes)?

这可能是许多读者在看到标题后的首个想法。确实如此,当古老的朴素贝叶斯与前沿的LLM相遇时,产生了令人惊讶的效果——我们可以直接扩展现有LLM模型的Context处理长度,无需对模型进行微调,也不依赖于模型架构,具有线性效率,而且效果看起来还不错——这就是本文所提出的NBCENaive Bayes-based Context Extension)方法。

摸石过河

假设$T$为要生成的token序列,$S_1,S_2,\cdots,S_n$是给定的若干个相对独立的Context集合(比如$n$个不同的段落,至少不是一个句子被分割为两个片段那种),假设它们的总长度已经超过了训练长度,而单个$S_k$加$T$还在训练长度内。我们需要根据$S_1,S_2,\cdots,S_n$生成$T$,即估计$p(T|S_1, S_2,\cdots,S_n)$。

点击阅读全文...