12 Dec

注意力机制真的可以“集中注意力”吗?

之前在《Transformer升级之路:3、从Performer到线性Attention》《为什么现在的LLM都是Decoder-only的架构?》等文章中,我们从Attention矩阵的“秩”的角度探讨了Attention机制,并曾经判断线性Attention不如标准Attention的关键原因正是“低秩瓶颈”。然而,这一解释对于双向的Encoder模型或许成立,但却难以适用于单向的Decoder模型,因为Decoder的Attention矩阵的上三角部分是被mask掉的,留下的下三角矩阵必然是满秩的,而既然都是满秩了,那么低秩瓶颈问题似乎就不复存在了。

所以,“低秩瓶颈”并不能完全解释线性Attention的能力缺陷。在这篇文章中,笔者试图寻求另一个角度的解释。简单来说,与标准Attention相比,线性Attention更难“集中注意力”,从而难以准确地定位到关键token,这大概是它效果稍逊一筹的主要原因。

点击阅读全文...

29 Nov

我在Performer中发现了Transformer-VQ的踪迹

前些天我们在《VQ一下Key,Transformer的复杂度就变成线性了》介绍了“Transformer-VQ”,这是通过将Key序列做VQ(Vector Quantize)变换来实现Attention复杂度线性化的方案。诚然,Transformer-VQ提供了标准Attention到线性Attentino的一个非常漂亮的过渡,给人一种“大道至简”的美感,但熟悉VQ的读者应该能感觉到,当编码表大小或者模型参数量进一步增加时,VQ很可能会成为效果提升的瓶颈,因为它通过STE(Straight-Through Estimator)估计的梯度大概率是次优的(FSQ的实验结果也算是提供了一些佐证)。此外,Transformer-VQ为了使训练效率也线性化所做的梯度截断,也可能成为将来的效果瓶颈之一。

为此,笔者花了一些时间思考可以替代掉VQ的线性化思路。从Transformer-VQ的$\exp\left(QC^{\top}\right)$形式中,笔者联想到了Performer,继而“顺藤摸瓜”地发现原来Performer可以视为Soft版的Transformer-VQ。进一步地,笔者尝试类比Performer的推导方法来重新导出Transformer-VQ,为其后的优化提供一些参考结果。

点击阅读全文...

20 Nov

Transformer升级之路:15、Key归一化助力长度外推

大体上,我们可以将目前Transformer的长度外推技术分为两类:一类是事后修改,比如NTK-RoPEYaRNReRoPE等,这类方法的特点是直接修改推理模型,无需微调就能达到一定的长度外推效果,但缺点是它们都无法保持模型在训练长度内的恒等性;另一类自然是事前修改,如ALIBIKERPLEXPOS以及HWFA等,它们可以不加改动地实现一定的长度外推,但相应的改动需要在训练之前就引入,因此无法不微调地用于现成模型,并且这类方法是否能够Scale Up还没得到广泛认可。

在这篇文章中,笔者将介绍一种意外发现的长度外推方案——“KeyNorm”——对Attention的Key序列做L2 Normalization,很明显它属于事前修改一类,但对Attention机制的修改非常小,因此看上去非常有希望能够Scale Up。

最初动机

之所以说“意外发现”,是因为该改动的原始动机并不是长度外推,而是尝试替换Scaled Dot-Product Attention中的Scale方式。我们知道,Attention的标准定义是(本文主要考虑Causal场景)
\begin{equation}\boldsymbol{o}_i = \frac{\sum_{j = 1}^i\exp\left(\frac{\boldsymbol{q}_i\cdot \boldsymbol{k}_j}{\sqrt{d}}\right)\boldsymbol{v}_j}{\sum_{j = 1}^i\exp\left(\frac{\boldsymbol{q}_i\cdot \boldsymbol{k}_j}{\sqrt{d}}\right)},\quad \boldsymbol{q}_i,\boldsymbol{k}_j\in\mathbb{R}^d\label{eq:sdpa}\end{equation}

点击阅读全文...

9 Nov

VQ一下Key,Transformer的复杂度就变成线性了

Efficient Transformer,泛指一切致力于降低Transformer的二次复杂度的工作,开始特指针对Attention的改进,后来更一般的思路,如傅里叶变换、线性RNN等,也被归入这个范畴。不得不说,为了降低Transformer的二次复杂度,各路大牛可谓是“八仙过海,各显神通”,各种神奇的思路“百花齐放”,笔者也从中学习到了不少理论知识。然而,尽管Efficient Transformer在理论上是精彩的,但实际上该领域一直都是不愠不火的状态,并没有实际表现十分出色的模型,在LLM火爆的今天,甚至已经逐渐淡出了大家的视野,也淡出了笔者的兴趣范围。

不过,最近有一篇论文《Transformer-VQ: Linear-Time Transformers via Vector Quantization》,却让笔者为之拍案叫绝。作者非常高明地洞察到,只需要对标准Attention的Key做一下VQ(Vector Quantize),复杂度就会自动降低为线性!这种线性化思路保留了标准Attention的形式,是标准Attention到线性Attention的一个完美过渡,同时最大程度上保留了标准Attention的能力。

高效难题

说起来,本站也算是比较早关注Efficient Transformer相关工作了,最早可以追溯到2019年解读Sparse Transformer的一篇博客《为节约而生:从标准Attention到稀疏Attention》。此后,陆续写的关于Efficient Transformer的其他博文还有

点击阅读全文...

22 Oct

从梯度最大化看Attention的Scale操作

我们知道,Scaled Dot-Product Attention的Scale因子是$\frac{1}{\sqrt{d}}$,其中$d$是$\boldsymbol{q},\boldsymbol{k}$的维度。这个Scale因子的一般解释是:如果不除以$\sqrt{d}$,那么初始的Attention就会很接近one hot分布,这会造成梯度消失,导致模型训练不起来。然而,可以证明的是,当Scale等于0时同样也会有梯度消失问题,这也就是说Scale太大太小都不行。

那么多大的Scale才适合呢?$\frac{1}{\sqrt{d}}$是最佳的Scale了吗?本文试图从梯度角度来回答这个问题。

已有结果

《浅谈Transformer的初始化、参数化与标准化》中,我们已经推导过标准的Scale因子$\frac{1}{\sqrt{d}}$,推导的思路很简单,假设初始阶段$\boldsymbol{q},\boldsymbol{k}\in\mathbb{R}^d$都采样自“均值为0、方差为1”的分布,那么可以算得
\begin{equation}\mathbb{V}ar[\boldsymbol{q}\cdot\boldsymbol{k}] = d\end{equation}

点击阅读全文...

8 Oct

预训练一下,Transformer的长序列成绩还能涨不少!

作为LLM的主流模型架构,Transformer在各类任务上的总体表现都出色,大多数情况下,Transformer的槽点只是它的平方复杂度,而不是效果——除了一个名为Long Range Arena(下面简称LRA)的Benchmark。一直以来,LRA一直是线性RNN类模型的“主场”,与之相比Transformer在上面有明显的差距,以至于让人怀疑这是否就是Transformer的固有缺陷。

不过,近日论文《Never Train from Scratch: Fair Comparison of Long-Sequence Models Requires Data-Driven Priors》将这“缺失的一环”给补齐了。论文指出,缺乏预训练是Transformer在LRA上效果较差的主要原因,而所有架构都可以通过预训练获得一定的提升,Transformer的提升则更为明显。

旧背景

Long Range Arena(LRA)是长序列建模的一个Benchmark,提出自论文《Long Range Arena: A Benchmark for Efficient Transformers》,从论文标题就可以看出,LRA是为了测试各种Efficient版的Transformer而构建的,里边包含了多种类型的数据,序列长度从1k到16k不等,此前不少Efficient Transformer的工作也都在LRA进行了测试。虽然在代表性方面有些争议,但LRA依然不失为一个测试Efficient Transformer的长序列能力的经典Benchmark。

点击阅读全文...

24 Aug

Transformer升级之路:14、当HWFA遇见ReRoPE

在上一篇文章《Transformer升级之路:13、逆用Leaky ReRoPE》中,笔者尝试通过在训练阶段逆用Leaky ReRoPE的思路,使得推理阶段的位置编码变为正常的RoPE,从而在达到长度外推的同时解决ReRoPE推理变慢的缺点。遗憾的是,从实验结果来看,“Leaky ReRoPE → RoPE”的效果并不如“RoPE → ReRoPE/Leaky ReRoPE”,因此这个问题尚未完全解决。

此时,笔者想到此前在《Transformer升级之路:9、一种全局长度外推的新思路》提出的HWFA本身就具有一定的长度外推能力,如果跟ReRoPE“强强联合”,是否会有更好的效果?更关键是,HWFA的加入可以大幅度降低推理成本,从而弥补ReRoPE的不足!

温故

首先,“例行公事”地回顾一下HWFA。HWFA(Hybird Window-Full Attention)并非一个具体的模型,而是一种Attention的组合方式,能够在基本保持效果不变的前提下,增强Attention模型的长度外推能力,同时还能降低训练和推理成本。

点击阅读全文...

14 Aug

Transformer升级之路:13、逆用Leaky ReRoPE

上周在《Transformer升级之路:12、无限外推的ReRoPE?》中,笔者提出了ReRoPE和Leaky ReRoPE,诸多实验结果表明,它们能够在几乎不损失训练效果的情况下免微调地扩展LLM的Context长度,并且实现了“longer context, lower loss”的理想特性,此外跟NTK-aware Scaled RoPE不同的是,其中ReRoPE似乎还有表现出了无限的Context处理能力。

总之,ReRoPE看起来相当让人满意,但美中不足的是会增加推理成本,具体表现为第一步推理需要算两次Attention,以及后续每步推理需要重新计算位置编码。本文试图通过在训练中逆用Leaky ReRoPE的方法来解决这个问题。

回顾

让我们不厌其烦地重温一下:RoPE形式上是一种绝对位置编码,但实际达到的效果是相对位置编码,对应的相对位置矩阵是:
\begin{equation}\begin{pmatrix}0 & \\
1 & 0 & \\
2 & 1 & 0 &\\
3 & 2 & 1 & 0 & \\
\ddots & 3 & 2 & 1 & 0 & \\
\ddots & \ddots & 3 & 2 & 1 & 0 & \\
\ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\tiny{L - 2} & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\tiny{L - 1} & \tiny{L - 2} & \ddots & \ddots & \ddots & 3 & 2 & 1 & 0 & \\
\end{pmatrix}\label{eq:rope}\end{equation}

点击阅读全文...