关于维度公式“n > 8.33 log N”的可用性分析
By 苏剑林 | 2021-09-27 | 40779位读者 | 引用在之前的文章《最小熵原理(六):词向量的维度应该怎么选择?》中,我们基于最小熵思想推导出了一个词向量维度公式“$n > 8.33\log N$”,然后在《让人惊叹的Johnson-Lindenstrauss引理:应用篇》中我们进一步指出,该结果与JL引理所给出的$\mathcal{O}(\log N)$是吻合的。
既然理论上看上去很完美,那么自然就有读者发问了:实验结果如何呢?8.33这个系数是最优的吗?本文就对此问题的相关内容做一个简单汇总。
词向量
首先,我们可以直接,当$N$为10万时,$8.33\log N\approx 96$,当$N$为500万时,$8.33\log N\approx 128$。这说明,至少在数量级上,该公式给出的结果是很符合我们实际所用维度的,因为在词向量时代,我们自行训练的词向量维度也就是100维左右。可能有读者会质疑,目前开源的词向量多数是300维的,像BERT的Embedding层都达到了768维,这不是明显偏离了你的结果了?
最小熵原理(六):词向量的维度应该怎么选择?
By 苏剑林 | 2020-08-20 | 102118位读者 | 引用随着NLP的发展,像Word2Vec、Glove这样的词向量模型,正逐渐地被基于Transformer的BERT等模型代替,不过经典始终是经典,词向量模型依然在不少场景发光发热,并且仍有不少值得我们去研究的地方。本文我们来关心一个词向量模型可能有的疑惑:词向量的维度大概多少才够?
先说结论,笔者给出的估算结果是
\begin{equation}n > 8.33\log N\label{eq:final}\end{equation}
更简约的话可以直接记$n > 8\log N$,其中$N$是词表大小,$n$就是词向量维度,$\log$是自然对数。当$n$超过这个阈值时,就说明模型有足够的容量容纳这$N$个词语(当然$n$越大过拟合风险也越大)。这样一来,当$N=100000$时,得到的$n$大约是96,所以对于10万个词的词向量模型来说,维度选择96就足够了;如果要容纳500万个词,那么$n$大概就是128。
EAE:自编码器 + BN + 最大熵 = 生成模型
By 苏剑林 | 2020-04-20 | 59413位读者 | 引用生成模型一直是笔者比较关注的主题,不管是NLP和CV的生成模型都是如此。这篇文章里,我们介绍一个新颖的生成模型,来自论文《Batch norm with entropic regularization turns deterministic autoencoders into generative models》,论文中称之为EAE(Entropic AutoEncoder)。它要做的事情给变分自编码器(VAE)基本一致,最终效果其实也差不多(略优),说它新颖并不是它生成效果有多好,而是思路上的新奇,颇有别致感。此外,借着这个机会,我们还将学习一种统计量的估计方法——$k$邻近方法,这是一种很有用的非参数估计方法。
自编码器vs生成模型
普通的自编码器是一个“编码-解码”的重构过程,如下图所示:
其loss一般为
\begin{equation}L_{AE} = \mathbb{E}_{x\sim \tilde{p}(x)}\left[\left\Vert x - \hat{x}\right\Vert^2\right] = \mathbb{E}_{x\sim \tilde{p}(x)}\left[\left\Vert x - D(E(x))\right\Vert^2\right]\end{equation}
最小熵原理(五):“层层递进”之社区发现与聚类
By 苏剑林 | 2019-10-19 | 155022位读者 | 引用让我们不厌其烦地回顾一下:最小熵原理是一个无监督学习的原理,“熵”就是学习成本,而降低学习成本是我们的不懈追求,所以通过“最小化学习成本”就能够无监督地学习出很多符合我们认知的结果,这就是最小熵原理的基本理念。
这篇文章里,我们会介绍一种相当漂亮的聚类算法,它同样也体现了最小熵原理,或者说它可以通过最小熵原理导出来,名为InfoMap,或者MapEquation。事实上InfoMap已经是2007年的成果了,最早的论文是《Maps of random walks on complex networks reveal community structure》,虽然看起来很旧,但我认为它仍是当前最漂亮的聚类算法,因为它不仅告诉了我们“怎么聚类”,更重要的是给了我们一个“为什么要聚类”的优雅的信息论解释,并从这个解释中直接导出了整个聚类过程。
当然,它的定位并不仅仅局限在聚类上,更准确地说,它是一种图网络上的“社区发现”算法。所谓社区发现(Community Detection),大概意思是给定一个有向/无向图网络,然后找出这个网络上的“抱团”情况,至于详细含义,大家可以自行搜索一下。简单来说,它跟聚类相似,但是比聚类的含义更丰富。(还可以参考《什么是社区发现?》)
最小熵原理(四):“物以类聚”之从图书馆到词向量
By 苏剑林 | 2018-12-02 | 95723位读者 | 引用从第一篇看下来到这里,我们知道所谓“最小熵原理”就是致力于降低学习成本,试图用最小的成本完成同样的事情。所以整个系列就是一个“偷懒攻略”。那偷懒的秘诀是什么呢?答案是“套路”,所以本系列又称为“套路宝典”。
本篇我们介绍图书馆里边的套路。
先抛出一个问题:词向量出现在什么时候?是2013年Mikolov的Word2Vec?还是是2003年Bengio大神的神经语言模型?都不是,其实词向量可以追溯到千年以前,在那古老的图书馆中...
走进图书馆
图书馆里有词向量?还是千年以前?在哪本书?我去借来看看。
放书的套路
其实不是哪本书,而是放书的套路。
很明显,图书馆中书的摆放是有“套路”的:它们不是随机摆放的,而是分门别类地放置的,比如数学类放一个区,文学类放一个区,计算机类也放一个区;同一个类也有很多子类,比如数学类中,数学分析放一个子区,代数放一个子区,几何放一个子区,等等。读者是否思考过,为什么要这么分类放置?分类放置有什么好处?跟最小熵又有什么关系?
最小熵原理(三):“飞象过河”之句模版和语言结构
By 苏剑林 | 2018-05-30 | 60261位读者 | 引用在前一文《最小熵原理(二):“当机立断”之词库构建》中,我们以最小熵原理为出发点进行了一系列的数学推导,最终得到$(2.15)$和$(2.17)$式,它告诉我们两个互信息比较大的元素我们应该将它们合并起来,这有利于降低“学习难度”。于是利用这一原理,我们通过邻字互信息来实现了词库的无监督生成。
由字到词、由词到词组,考察的是相邻的元素能不能合并成一个好“套路”。可是套路为什么非得要相邻的呢?当然不一定相邻,我们学习语言的时候,不仅仅会学习到词语、词组,还要学习到“固定搭配”,也就是说词语怎么运用才是合理的,这是语法的体现,是本文所要探究的,希望最终能达到一定的无监督句法分析的效果。
由于这次我们考虑的是跨邻词的语言关联,因此我给它起个名字为“飞象过河”,正是
“套路宝典”第二式——“飞象过河”
语言结构
对于大多数人来说,并不会真正知道什么是语法,他们脑海里就只有一些“固定搭配”、“定式”,或者更正式一点可以叫“模版”。大多数情况下,我们是根据模版来说出合理的话来。而不同的人的说话模版可能有所不同,这就是个人的说话风格,甚至是“口头禅”。
最小熵原理(二):“当机立断”之词库构建
By 苏剑林 | 2018-04-24 | 84640位读者 | 引用在本文,我们介绍“套路宝典”第一式——“当机立断”:1、导出平均字信息熵的概念,然后基于最小熵原理推导出互信息公式;2、并且完成词库的无监督构建、给出一元分词模型的信息熵诠释,从而展示有关生成套路、识别套路的基本方法和技巧。
这既是最小熵原理的第一个使用案例,也是整个“套路宝典”的总纲。
你练或者不练,套路就在那里,不增不减。
为什么需要词语
从上一篇文章可以看到,假设我们根本不懂中文,那么我们一开始会将中文看成是一系列“字”随机组合的字符串,但是慢慢地我们会发现上下文是有联系的,它并不是“字”的随机组合,它应该是“套路”的随机组合。于是为了减轻我们的记忆成本,我们会去挖掘一些语言的“套路”。第一个“套路”,是相邻的字之间的组合定式,这些组合定式,也就是我们理解的“词”。
平均字信息熵
假如有一批语料,我们将它分好词,以词作为中文的单位,那么每个词的信息量是$-\log p_w$,因此我们就可以计算记忆这批语料所要花费的时间为
$$-\sum_{w\in \text{语料}}\log p_w\tag{2.1}$$
这里$w\in \text{语料}$是对语料逐词求和,不用去重。如果不分词,按照字来理解,那么需要的时间为
$$-\sum_{c\in \text{语料}}\log p_c\tag{2.2}$$
最小熵原理(一):无监督学习的原理
By 苏剑林 | 2018-04-18 | 87918位读者 | 引用话在开头
在深度学习等端到端方案已经逐步席卷NLP的今天,你是否还愿意去思考自然语言背后的基本原理?我们常说“文本挖掘”,你真的感受到了“挖掘”的味道了吗?
无意中的邂逅
前段时间看了一篇关于无监督句法分析的文章,继而从它的参考文献中发现了论文《Redundancy Reduction as a Strategy for Unsupervised Learning》,这篇论文介绍了如何从去掉空格的英文文章中将英文单词复原。对应到中文,这不就是词库构建吗?于是饶有兴致地细读了一番,发现论文思路清晰、理论完整、结果漂亮,让人赏心悦目。
尽管现在看来,这篇论文的价值不是很大,甚至其结果可能已经被很多人学习过了,但是要注意:这是一篇1993年的论文!在PC机还没有流行的年代,就做出了如此前瞻性的研究。虽然如今深度学习流行,NLP任务越做越复杂,这确实是一大进步,但是我们对NLP原理的真正了解,还不一定超过几十年前的前辈们多少。
这篇论文是通过“去冗余”(Redundancy Reduction)来实现无监督地构建词库的,从信息论的角度来看,“去冗余”就是信息熵的最小化。无监督句法分析那篇文章也指出“信息熵最小化是无监督的NLP的唯一可行的方案”。我进而学习了一些相关资料,并且结合自己的理解思考了一番,发现这个评论确实是耐人寻味。我觉得,不仅仅是NLP,信息熵最小化很可能是所有无监督学习的根本。
最近评论