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A redundancy reduction strategy, which can be applied in stages, is 
proposed as a way to learn as efficiently as possible the statistical prop- 
erties of an ensemble of sensory messages. The method works best for 
inputs consisting of strongly correlated groups, that is features, with 
weaker statistical dependence between different features. This is the 
case for localized objects in an image or for words in a text. A local fea- 
ture measure determining how much a single feature reduces the total 
redundancy is derived which turns out to depend only on the proba- 
bility of the feature and of its components, but not on the statistical 
properties of any other features. The locality of this measure makes 
it ideal as the basis for a ”neural” implementation of redundancy re- 
duction, and an example of a very simple non-Hebbian algorithm is 
given. The effect of noise on learning redundancy is also discussed. 

1 Introduction 

Given sensory messages, for example, the visual images available at the 
photoreceptors, animals must idenhfy those objects or scenes that have 
some value to them. This problem, however, can be very tricky since the 
image data (e.g., photoreceptor signals) may underdetermine the scene 
data (e.g., surface reflectances) needed to find and idenhfy objects (Ker- 
sten 1990). In the case of very primitive organisms crude special purpose 
filters may suffice, such as the “fly detector” in frogs. But for more gen- 
eral object detection and for the reconstruction of physical scenes from 
noisy image data, some additional clues or constraints are needed. One 
type of clue is knowledge of the statistical properties of scenes and images 
(Attneave 1954, Barlow 1961, 1989). Such information can be used to re- 
cover physical scene data from noisy image data, as shown for example 
by Geman and Geman (1984). Barlow (1989) has also argued that such 
information is necessary for object recognition, since it allows objects to 
be discriminated from irrelevant background data. Also, since objects are 
encoded redundantly in sensory messages, knowing this redundancy can 
aid in their recognition. 

But how can an organism go about learning the statistical properties 
of sensory messages? And second, what is the most efficient way of sfor- 
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ing this statistical knowledge? The enormity of these problems becomes 
obvious when one considers just how many numbers in principle must 
be learned and stored. In vision this amounts to storing the probabil- 
ity of every possible set of pixel values in both space and time. For a 
conservative estimate of this number for humans, assume one million 
cones sampled in space only-temporal sampling would add consider- 
ably to this. Then assume a grey scale of roughly 100, which is less 
than the number of contrast units that can be discriminated in bright 
light-and ignores luminance data. This gives 100’@“)~ooo v b l e  images 
whose probabilities could not possibly be stored as 100 wo*wo numbers 
in the brain, which has no more than 1OI6 synapses. However, there are 
two very important properties of images which allow this number to be 
decreased enormously. The first and most obvious is noise: most images 
differ from each other only by noise or by symmetries, so there is no 
need to learn and store their individual probabilities. 

The second s impwng  property is that sensory message probabili- 
ties can often be derived from a far smaller set of numbers. This is the 
case when the set of probabilities P(Z) for the images I = ( 1 1 ,  h, l 3 , .  . . l,}, 
with pixel values I,, can be factorized into a far smaller set of statis- 
tically independent probabilities for the subimages (11 ,  Izr 4, . . . I , }  as 
P ( I )  = P(Il)P(12)P(13) . . . P(Zm). Thus, as Barlow (1989) has emphasized, 
the most efficient way to store the probabilities P(Z) would be to find a 
transformation, a factorial code, from the pixel representation I, to the sta- 
tistically independent representation I, with smallest m. It can be demon- 
strated (Atick and Redlich 1990a) that this explains one purpose of the 
retinal transfer function, which approximately removes (second-order) 
statistical dependence from the optic nerve outputs { I , ,  Zzr 131.  . .Im}. 

Finding a transformation to a factorial representation is an unsuper- 
vised learning problem that typically requires many learning stages. At 
each stage I assume that only the local probabilities P(I,) are measured, 
but as statistical independence is “increased, products of these give bet- 
ter approximations to the joint probabilities P ( I ) .  To quantdy just how 
statistically independent a representation is at each stage, it is necessary 
to define a global learning measure L, which should be a function only of 
the local probabilities P(l , )  (global denotes a property of the entire rep- 
resentation at each stage). Such a measure is defined here based on the 
redundancy,’ a quantity that is minimal only when the code is factorial. 

Learning a redundancy reducing transformation at each stage can 
be very difficult and may depend on the nature of the redundancy at 
that stage. In the retina, the greatest source of redundancy is due to 

‘I use “redundancy reduction” to refer to statistical dependence between pixels. 
This is not strictly speaking the only source of redundancy, which also can come from 
the uneven probability distribution of grayscale values. Nevertheless, I use the term 
“redundancy reduction” because it im lies an information preserving transformation 
(unlike, e.g., “entropy reduction”) ancfalso because the word “redundancy” has an 
intuitive appeal. The precise meaning of redundancy reduction here is a transformation 
which increases the learning measure L, to be defined in Section 2. 
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multiscale second-order correlations between pixels-corresponding to 
scenes being very smooth over large spatial and temporal regions-and 
this redundancy can be removed easily through a linear filter (Atick and 
Redlich 1991). But this is the exception, since in general quite compli- 
cated nonlinear coding is required (for some progress see, e.g., Barlow 
and Foldiak 1989; Redlich 1992). However, there is one common type 
of nonlinear redundancy reduction that is relatively straightforward to 
learn. This is the redundancy in images coming from strong correlations 
within sharply delineated features which are in turn weakly correlated 
with each other (the features can be spatially extended as long as they 
decouple from other parts of the image). 

The procedure for factorizing in this case is to look first for the sub- 
features that are most tightly bound, and therefore are responsible for 
the most redundancy. These may then be pieced together in stages, un- 
til eventually a statistically independent set is found. What makes this 
much simpler than I expected is the existence of a completely local mea- 
sure of how much an individual feature (or subfeature) contibutes to 
the global redundancy. By local I mean that this measure is only a func- 
tion of the probabilities of the feature and its components, but not of the 
probabilities of any other feature or components. 

The locality of this feature measure also allows simple implementa- 
tion of redundancy reduction through unsupervised ”neural” learning 
algorithms. One such non-Hebbian algorithm will be discussed here, 
and compared to some other unsupervised algorithms (von der Mals- 
burg 1973; Bienenstock et al. 1982; Hinton and Pearlmutter 1986). The 
closest connection is with Hinton and Pearlmutter’s algorithm because 
their single-unit feature measure is mathematically related to the one 
here, though this is manifest only in a particular approximation. This 
connection is not surprising since (see, e.g., Hinton and Sejnowski 1983) 
their aim was also to learn statistical regularities. Some of the major dis- 
tinctions between this work and theirs are the focus here on efficiency of 
storage and learning (on statistical independence) and also the insistence 
here on transformations which preserve information (see Section 6). 

To demonstrate the power of the present approach, I apply it to strip 
the redundancy from English text-to learn the text’s statistical proper- 
ties. This example is used because we all know a fairly good solution to 
the problem: transform from the letter representation to the word repre- 
sentation. Of course to make the problem sufficiently difficult all clues 
to the solution, such as spaces between words, punctuation, and capi- 
talization, are first eliminated from the text. The algorithm eventually 
segments the text just as desired into words and tightly bound groups of 
words. 

Although it is not the main purpose of this paper, I shall also indicate 
how useful the algorithm can be for recovering messages from noisy sig- 
nals. This works best when the useful information is coded redundantly 
while the noise is random. It then turns out that the algorithm used here 
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finds only the useful portion of the input, and this will be demonstrated 
using noisy text. 

Finally, I should emphasize that my aim is not to find redundancy 
in language or to claim that words are learned or stored in the brain as 
found here. Instead, my ultimate motivation is to find an environmen- 
tally driven, self-organizing principle for the processing of visual images 
(and other sensory signals) to facilitate object or pattern identification 
(see Redlich 1992). So by "words" here I always wish to imply visual 
features, with letter positions in a text corresponding to pixel locations 
in an image and particular letters corresponding to image grayscale (or 
color) values. The next step of applying the algorithms derived here to 
visual images will appear in future papers. 

2 Global Learning Measure C 

Taking the English text example, the input consists of an undifferentiated 
stream of "pixel" values L = {a,  b, c ,  . . .} (as in Fig. la) and the goal is to 
learn the probability functions P(Z) = P(ll , l p ,  /J, . . . l , ) ,  with the subscript 
n denoting the position of letter 1, in the text. In practice, the aim is to 
learn P ( I )  for string length n roughly equal to the correlation length of 
the system. But even for n as small as 12 this in principle requires storing 
and updating as many as 2612 numbers. 

To find P(Z) more efficiently, at each stage letters will be grouped 
together into "words," which at first will be only pieces of real En- 
glish words. Then at successive stages the new set of words W = 
{w~, w2, w3, . . . wm} will be built by combining the previous "words" into 
larger ones, among which will be real English words and also tightly 
correlated groups of real words (from now on quotes around words are 
dropped). At the very first stage P ( I )  = P(ll , l 2 , l 3 , .  . . In) is very poorly 
approximated by the product of letter probabilities P ( l 1 ) P ( l ~ ) P ( l 3 )  . . . P(ln),  
but as the redundancy is reduced, products of word probabilities 
P(wI )P(w$(w~)  . . . P(Wm) give better and better approximations to P(1). 

To quantitatively measure how well P(I)  is known at each stage, we 
can use information theory (see also Barlow 1961) to define a global 
learning measure 

where HL is the entropy in the original letter code, 

(2.1) 

HL = - c PI log(P1) 
IEL 

(2.2) 
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and Hw/S is the word entropy per letter at a particular stage in learning: 

Hw = - c Pwlog(Pw) 
WEW 

s = CP,SW 

with 3 the average of the word lengths sw. 

(2.3) 

a ~ i c c w a s h e g i n n i n g t o g e t v e r y t i r e d o f s i t t i n g h y h e r s i s t e r o n  
t h e h a n k a n d o f h a v i n g n o t h i n g t o d o o n c e o r t w  i c e s h e h a d p e e p  
e d i n t o t h e h o o k h e r s i s t e r w a s r e a d i n g b u t i t h a d n o p i ~ t u r e s ~ r  
c o n v e r s a t i o n s i n i t a n d w h a t i s t h e u s e o f a h o o k t h o u g h t a l i c e w  
i t h o u t p i c t u r e s o r c o n v e r s a t i o n s s o s h e  w a s c o n s i d e r  i n g i n h e  
r o w n m i n d a s w e l l a s s h e c o u l d f o r t h a h o t d a y m a  d e h e r f e e l v e r y  
s l e e p y a n d s t u p i d w h e t h e r t h e p l e a s u r e o f m a k i n g a d a  i s y c h a i  
n w o u l d h e w o r t h l h e t r o u h l e o f g e t t  i n g u p a n d p i c k i n g l h e d a i n i  
e s w h e n s u d d e n l y a w h i t e r a h h i t w i t h p i n k e y e s r a n c l o s e h y h e r  
t h e r e w a s n o t h i n g s o v e r y r e m a r k a b l e i n t h a t n o r d i d a l i c e  t h i  
n k i I s  o v e r y m u c h  o u t o f I h e w a y t o h e a r t h e  r a  h h i t s a y  t o  i t s e I f  o 
h d e a r o h d e a r  

(a) 

alice was b e g in n ing to g e t very I i r e d o f s i t  t ing b y her s i s t e r 0 n the h a n 
k and o f h a v ing n o  th ing t o d o o n c e o r t w i c e she h a d p e e p e d in t o  the b o 
o k her s is I e r  was r e a  d ing hut i th a d n o p i c t u r e s o r c o n ver s a t i  o n s in i 
t and w h a t i s the u s e o f a  h o o k th ough t alice with ou t p i c t u r e  s fl r c o n  vet 
s a t i  o n s s o she was c o n s i d  e ring in hero w n m in d a s w e I I a s she c ould for 
the h o I d  a y m a d e her f e e I very s I e e p y and s t u p i d w he the r the p 1 e a s u r 
e o f  m a k ing a d a i s y c h a  in w ould h e w o r th the t r ou h I e o f g e t t ing u p 
and p i c k ins the d a  i s i e s w h e n  s u d d e n 1 y a w h i t  e r a h h i t with p in k e y  e 
s r a n c I o s e h y her the r e was n o  th ing s o very r e m a  r k a h I e in that n o r  d i 
dalic e th ink i t s o  very m u c h ou t o  fthe w a y to he a r the r a h h i t s a y t o  i t s e 
l f o h d e a r o h d e a r  

(h) 

alice was beg in n ing to g e t very t i r ed of s it 1 ing h y her s i s t e r on the b a n k 
and of ha v ing n o thins to d o on c e o r I w i c e shehad p e e p ed in to the h ook her 
s i s t e r was r e a d ing hut i th a d n o  p i c t u r e s o  r c o n  ver s a t i on s in it and 
what i s the u s e of a h ook thought alice with ou t p i c I u r e s o r c on ver s a t i on s 
s o she was c on s i d e r ing in her o w n  m in d a s w e 1 I a s shecould for the h o t d a y 
m a  d e her f e e I very s I e e p y and s t u p i d w he thu the p I e a s u r e  of m a k ing 
a d a i s y ch a in would he w o r th the t r ou b 1 e of g e t t ing u p and p i c k ing the d 
a i s i e I when s u d d e n  ly a whi t e r a  h h it with p ink e y  e s r a n c I0 s e h y  her 
her e was n o thing s o very r e m a r k a h I e in that n o r d'i dalic e think it s o very 
m uch ou t ofthe way to he a r ther a h h its a y to it s elf o h d e a r  o h  d e a r 

(C) 

Figure 1: A small sample of the text with all clues to the redundancy removed. 
In (a) single letters are treated as words, indicated by the spaces between them, 
and the entropy is HL = 4.16 bits. As the redundancy is reduced letters are 
combined into words, indicated by removing spaces between them. Only some 
of the redundancy reduction stages are shown in (b)-(fl, with the entropy per 
letter reduced to Hw/S = 3.75, 3.46, 2.84, 2.51, and 2.35 bits, respectively (the 
real word entropy per letter is Hw/S = 2.17 bits). Continued. 
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alice was heg in n ing toge I very t ir ed of s it t ing hy her s is ter on the h an k and 
of having nothing to do on ce on w ice shehad p e e p ed intothe h ook her s is ter was 
read ing hut i thad no p i c tur e s or conversation s in it and what is the us e of a h 
ook thoughtalice without p i c tur e s or conversation s s o shewas con side r ing in 
her own m ind as well asshecould for the h o t day made her fee I very s I e e p y and s 
t up id w he ther the pleas ure of mak ing ad a is y ch a in would he wor th the t r ou 
hle of getting up and p i ck ing the d a is i e s when suddenly a whiterahhit with p in 
key e s r an close by her therewas nothing s o very re mark a hle in that no r d i dalic 
e think it Y o very much outofthe way to hear therahhit say to it self ohdear ohdear 

( d )  

alice was heginn ing toget verytiredof s i t  I ing hy her s is tcr on the hank and of 
having nothing to do on ce ortwice shehad peeped intothe hook her s is ter was read 
ing hut ithad no picture s or conversation s in it and what is the us e of a hook 
thoughtalice without picture s or conversation s so shewas consider ing in her own 
mind aswell asshecould for the hot day made her fee I very sleep y and stupid 
whether the pleas ure of making ad a is y ch a in wouldhe wor th the t rouhle of 
getting up and p ick ing the d a is i e s when suddenly a whiterahhit with p in key e s 
r an close hy her therewas nothing so very remark a hle in that no r d i dalic e think 
it so very much outofthe way to hear therahhit say to it self ohdear ohdear 

( a )  

alice was heginning toget verytiredof sitting hy her s is ter onthehank and of having 
nothingtodo onceortwice shehad peeped intothe hook her s is ter was read ing hut 
ithad no picturesor conversation s in it and what is the us e of a hook thoughtalice 
without picturesor conversation s so shewas consider ing in her own mind aswcll 
asshecould for the hot Jay made her feelvery sleepyand stupid whether the pleas ure 
of making ad a is y ch a in wouldhe wor th the t rouhle of getting up and p ick ing the 
d a is i e s when suddenly a whiterahhit with p in key e s r an close hy her therewas 
nothing so very remark able in that no r d i dalic e think it so very much outofthe 
way to hear therahhit say toitself ohdear ohdear 

( f)  

Figure 1: Continued. 

Initially, the set of words W is also the set of letters L so Hw/S = HL and 
C = 0, indicating that no learning has occurred. At the other extreme the 
word code is factorial for which2 Hw/S = H, where H is the total entropy 
per letter of the text: 

(2.4) 

[It is well known (Shannon and Weaver 1949) that H w / s  5 H with equal- 
ity only when the words w in W become completely independent.] So 

2This is true because the word code is reversible, .so H is invariant; for another type 
of reversible code see Redlich (1992). 
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the learning measure C starts out equal to zero and grows as redundancy 
is reduced until it approaches its maximum value 

where Rc is the total redundancy in the text due to correlations between 
letters. If there are no correlations between letters then H = H L  and 
Rc = 0. 

It is important to note that although C is bounded from above by Rc 
(Hw/S is bounded from below by H ) ,  it can go negative, so the system 
can in effect unlearn or increase redundancy. This happens when words 
(or letters) at one stage which are already independent of each other are 
mistakenly combined into new words. 

3 Local Feature Measure F 

Now that we have a global learning measure C, how do we go about 
finding the word/letter combinations W -+ W’, which increase C? For 
this purpose it is useful to have a local measure of how much an indi- 
vidual new word or feature increases L. Such a local feature measure F 
can be derived directly from C by calculating the change in C caused 
by including in W + W’ a single new feature. Actually, since increasing 
C corresponds to decreasing Hw/S,  we need to calculate the change in 
Hw/S.  

For extra clarity, let us first calculate the change in Hw/S when only 
two words in Ware combined to form a new word. Assume for simplicity 
that the current word set W still contains many single letters, including 
the letters 9’’ and ”n.” Let us see, as an example, how combining these 
letters into the particular word w = “in” changes Hw/S in 2.3. Following 
w +  W’ 

where Pi,,, Pi, and P ,  denote the probabilities of the example word “in,” 
and of the letters ’?“ and “n.“ Also the “in“ terms have been separated 
out, so the sum C still runs over the old set W (assuming “i” and/or “n” 
still exist as independent elements in the set W’). 

To calculate the change HL/S’ - Hw/S, the new probabilities P‘ must be 
expressed in terms of the old probabilities P. This is easily accomplished 
using Pw = N w / N ,  where Nw = number of times word w appears, and 
N = total word count for the text (later N can be taken to infinity). After 
combining ”i” and “n” into “in,” the number N -+ N’ = N - Nin, since 
every time the word “in” occurs it is counted as one word in W’, but was 



296 A. Norman Redlich 

counted as two words in W. Likewise, Ni -+ Ni - Nin, and N ,  -+ N ,  - Ni,. 
Therefore, 

Substituting these P’ into 3.1 gives 

= s/(1 -Pin)  (3.3) 

so that 

which defines the feature measure 3 

The original average word length 3 has not been included in the definition 
of 3 because it is the same for all new features built out of W. As 
promised, this feature measure depends only on the local data Pi,, Pi, 
and P,. 

The local measure 3 can also be derived in general for new words 
of any length. We need to take into account the number m of old words 
making up the new word, as well as the number of times, m,, each 
old word w appears. For example if the new word “trees” is built out 
of the old words ”tr,” “e,” and “s” in W, then m = 4, while mt, = 1, 
m, = 2, m, = 1 giving Em, = m. The new probabilities P can then be 
derived from Pw and m, using counting arguments only slightly more 
complicated than before. Thus, denoting the new word by f, for feature, 
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N -t N‘ = N - (m - l)Nf, while N, + N ,  - m,Nf for w in the set W, 
of old words in f ,  and N ,  + N ,  otherwise. With these adjustments, the 
general feature measure defined by 3.4 is 

F = F(P,,P, w E W,) 

I -[1 - (m - l)P,] log[l - (m - l)Pf] (3.6) 

This reduces to 3.5 in the special case f = “in,” W, = {”i I ” ” n ) , m = 2 ,  ” 

mi = 1, m, = 1. 
To gain some intuition into just what statistical properties are mea- 

sured by F it is useful to approximate 3 for the case Pf << P,, for all 
w E W,. In the case of English text, this is a good approximation in the 
first stages of redundancy reduction. The approximate F is 

Fppl(log( n,, pf w, Ew ) -1) (3.7) 

using log base e. In this form, F bears its closest resemblance to the 
single-unit G-maximization measure of Hinton and Pearlmutter (1986). 
This is because the first term in 3.7, that is, neglecting -Pf, is like a single 
term in the Kullback information when the original probability estimate 
is statistical independence of inputs. The actual Kullback information 
requires summing such terms over all features f .  

For the feature f to significantly reduce redundancy, F needs to be 
strongly positive and for this, we see from 3.7 that the feature must 
have two statistical properties: First, the term in parentheses must be 
large and positive, which requires Pf >> n P w .  This term plus one is 
the mutual information (Shannon and Weaver 19491, which measures how 
strongly the components that make up the feature? are correlated. A 
good example in English is “qu” which has high mutual information 
because “q” always predicts “u” so the “u’’ following “q” is redundant. 

The second requirement is that the feature be relatively frequent since 
Pf multiplies the mutual information. Otherwise, the feature could be 
highly self-correlated, but not common enough to significantly reduce 
the global redundancy. This is very important, since the mutual infor- 

31n physics language, the feature is analogous to a bound state like an atom built out 
of protons and electrons. The mutual information is then proportional to the difference 
between the bound state (feature) energy and the sum of the energies of its components. 
This is the amount of energy that is gained by building the bound state (atom). 
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mation alone tends to favor very rare features composed of very rare 
elements. On the other hand, large P, alone is a dangerous criterion 
since there are many common features with small or even negative mu- 
tual information. Including these in the new set W actually increases 
the redundancy, since it effectively creates a correlated structure out of 
already statistically independent elements. In English text an example of 
a redundancy increasing feature is ”tte,” built out of “t” and “e.” 

4 Experimental Results 

F can be applied to devise a redundancy reduction algorithm for English 
text. One simple strategy would be to find at each stage the single new 
word which has the largest F, and thus find W from W. However, in 
practice it turns out that a far more time efficient approach is to find the 
set of new words with largest F, say 10 to 100 new words at each step. 
Another computational efficiency is gained by limiting the number m of 
component words to some small number, such as three or four. It turns 
out that for English text-likely also for many other ensembles-using 
only up to third-order correlations at each stage (m = 2,3) is sufficient, 
since larger words are most often composed of redundant subwords. 

To experimentally test how well this works I applied it to learning 
about 25 pages of a well known children’s book (Carroll 1865), chosen 
for its moderately sized vocabulary of roughly 1700 (real English) words. 
After eliminating all punctuation, capitals, and word spaces, the excerpt 
contained approximately 48,000 characters. The letter entropy was found 
to be HL = 4.16 bits, while the entropy per letter for real English words is 
2.17 bits. Figure la  shows a small piece of the text after it was stripped 
of any redundancy clues. Spaces are used between letters to indicate that 
they are being treated here as separate “words.” Figure lb-f then show 
the text sample in various stages of redundancy reduction. At each stage, 
when new words are built the spaces between their component words 
are eliminated. Figure 1 shows the results of using only second- and 
third-order joint probabilities at each step to find roughly 10 to 100 new 
words per stage. About 20 such stages were required to get the redun- 
dancy down to the Hw = 2.35 bits of Figure le  (only 5 of the 20 stages 
are actually shown in the figure) which is close to the real word entropy. 
Even computing all second- and third-order joint probabilities, these re- 
sults represent only a few hours computation on a Macintosh computer. 
But the computation time and array storage needed can be reduced even 
further by calculating the joint probabilities only for a sample of possible 
new words, as will be discussed in the next section. 

Figure 2 shows the improvement possible using up to fourth-order 
probabilities; only the last stage is shown in the figure. Since there is 
only a small improvement over the third-order result, this demonstrates 
that fourth-order is not absolutely necessary. 
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alice was heginning toget verytiredof sitting hy hersister onthehan k and of having 
nothingtodo onceortwice shehad peeped intothe hook hersister was read ing hut 
ithad no pictures or conversation s in it and what is theuseof a hook thoughtalice 
without pictures or conversation s so shewas consider ing in her ow n mind aswell 
asshecould for the hot day made her feel very sleepy and stupid whether the plea 
sure of making ad a is y ch a in wouldhe wor th the trouhle of gettinypand p i c king 
the d a is ies when suddenly a whiterahhit with p in k eyes r an close hy her therewas 
nothing so very remark ahle in that n or did alice think it so very much outoftheway 
to hear therahhit saytoitself ohdear ohdear 

Figure 2: The same sample of text, but using up to fourth-order correlation per 
stage instead of the third-order limit in Figure 1. Only the last stage is shown. 
It has Hw/S = 2.28 bits. 

Reviewing the results in Figure 1, one may note that some real English 
words, such as “daisies,” are not found, but this is due to the relatively 
small sample of English text used. In fact, the word “daisies” appears 
in the text only once so it would have been an error for it to quahfy 
as a redundant feature. However, the algorithm is superbly sensitive 
to redundant words which appear in the text as few as two or three 
times. Another thing to observe is that many groups of real words are 
combined into single features. Some of this reflects actual redundancy 
in English, for example “ofthe” is likely a truly redundant combination 
in English, but many of these, such as “whiterabbit” are only redundant 
for this sample text. Such real word groupings would have far lower 
redundancy (lower 37 in a much larger sample text which includes many 
different subjects and writing styles. 

The most significant success of the redundancy reduction algorithm 
is the segmentation of the text, which is almost always broken at the 
boundary between real words. This efficient segmentation corresponds 
to finding a cover W (Fig. le) of the entire sample with a small number of 
words-less than the number of real words. This is close to the smallest 
number of (approximately) statistically independent words. Such effi- 
cient segmentation would not have been found using an algorithm that 
chooses only high probability words. 

5 Neural Implementation 

In a ‘,neural” implementation of the algorithm used in Section 4, neurons, 
or dendrites, calculate the local data Pf and P,. Actually, only Pf needs 
to be calculated since the P, are computed by the previous stage and 
may be encoded in the neural output strengths. Finding F(Pf,Pw) still 
requires some computation, but (especially in 3.7) this reduces essentially 
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to computing logarithms! The real problem is not how to calculate Pf 
or F(Py) ,  but how to search the space of possible features for those with 
largest 3. One option is to convert this search to one over a set of (con- 
tinuous) synaptic weights and then apply gradient descent to maximize 
3. This is the technique used by Hinton and Pearlmutter (1986) to maxi- 
mize the Kullback information. Though its application to 3 is somewhat 
different, I believe it might work, although I have not attempted it. In- 
stead, I wish to explore here a more direct approach which avoids the 
convergence problems often associated with gradient descent. 

The simplest and most direct approach would be to exhaustively cal- 
culate Pr for all features of size 5 m. Of course m small enough to 
make this computationally feasible might be too small to discover the 
redundancy. But, there really is no need for an exhaustive search, since a 
prerequisite for large 3 is large P f ,  and a more limited sampling will usu- 
ally find these common features. Then only those common features with 
sufficiently large 3 need be kept. I now use this to develop a temporal 
search algorithm. 

Suppose first that there are a fixed number (smaller than needed for 
an exhaustive search) of feature neurons at each learning stage, which 
can be in one of two states, occupied or pee. Occupied neurons respond 
to one feature, and their job is to quickly calculate a good approximation 
for F. As soon as the occupied neuron discovers that 3 is below some 
constant threshold 3*, it becomes free and is available to test another 
feature. The neurons are mutually inhibiting so no two neurons can be 
occupied by the same feature. Also there is some ordering to decide 
which free neuron takes the next possible feature. 

To approximate 3, a neuron only needs an approximation for Pf since 
the P, were calculated by the previous stage. How big Pf needs to be 
for F(Pf ,P,)  > F* depends on the probabilities of the input elements 
P, that make up the feature. In effect, the feature neuron uses a feature- 
dependent threshold A(P,) for P f .  (If the criterion were simple frequency 
of the feature, on the other hand, one would use a fixed threshold A 
for Pf.) Features that are built out of infrequent inputs w have lower 
threshold for P f ,  as can be seen most easily in 3.7. 

The final ingredient is an approximation for P f ( t )  at time t, where 
t = 0 is the time when the neuron first picks up its feature. For this, 
I make a very simple choice: If the feature has occurred only once at 
time t = 0, then for t > 0 approximate P f ( t )  = l / t ;  if the feature occurs a 
second time at t = TI use for t > TI, P f ( t )  = 2/ t ;  and if the feature has 

41t should be noted that - log(P) has a very nice interpretation as the infomation 
in or improbability of the signal. If neurons have output strengths proportional to the 
information they carry, then the mutual information, one of the ingredients needed for 
3, can be calculated through simple addition of neuronal outputs. This was suggested 
by Uttley (1979) as one of the attractions of using the mutual information to build 
a conditional probability computer (Singh 1966). Also, the idea that neurons signal 
improbability has been proposed by Barlow (19891, and there is evidence for this in the 
retina. 
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occurred n + 1 times use P f ( t )  = n/t, which eventually approaches the 
true Pf for large n. 

If at any time P f ( t )  drops below the threshold A(P,), that is, F(t )  
drops below 7, then the occupied neuron is freed to search for other 
features. Of course, since for small t P f ( t )  may be a poor approximation, 
good features will be dropped occasionally, but these are likely to be 
picked back up again since they must be relatively frequent. On the 
other hand, the longer a neuron is occupied by a feature, the better the 
approximate Pf(f) becomes and the less susceptible to such errors. In 
fact, I have simulated this algorithm for the beginning stages of learning 
for the sample text used in Section 4, and it finds exactly the same set of 
features as does an exhaustive search, but it requires far less memory. 

One may also ask how this learning algorithm compares with other 
unsupervised “feature” detection algorithms. First, as has been dis- 
cussed, this approach is related to Hinton and Pearlmutter’s: both fa- 
vor features with large Pf and with Pf >> n P W ,  although theirs is not 
guaranteed to find a factorial code. The greater distinction is between 
algorithms that use these criteria and algorithms of the type proposed by 
von der Malsberg (1973) and by Bienenstock et al. (1982). Those also fa- 
vor features with large Pf, but they prefer features composed of elements 
with large P,. This may lead to features with small mutual information, 
and thus may include false background elements. For words in text this 
leads to poor segmentation, since many very tightly bound words are 
composed of relatively rare subwords. 

6 Noise and Generalization 

As mentioned in the introduction, desirable input information is often 
encoded redundantly (e.g., words in text) so redundancy can be used to 
distinguish true signal from noise. This is the case for example when 
the noise is not correlated with the true signal or with itself. Then the 
feature detection algorithm still finds the true signal redundancy-the 
true signal statistics-even though the total signal is noisy. 

To show this, consider an English text with random noise, that is, a 
certain fraction of letters, chosen randomly, are incorrect. Taking the same 
sample text used in Section 4, but with 1/13 letters randomly incorrect, 
I applied the same algorithm as before. The result, shown in Figure 3, is 
that only real words and word combinations are chosen by the algorithm, 
while noisy letters are ignored. So noise does not confuse the feature 
detection. Once the features have been found, the text can be restored 
by using the probabilities of the redundant words to predict the noise- 
incorrect letters, that is, to build Bayesian filters. 

It should be noted that in order to reconstruct the true text, one needs 
to know more than just the statistical properties of the noisy input mes- 
sages. In the above example, one additionally needs to know that the 



302 A. Norman Redlich 

a l i c e w a s h e g i u n i n g t o g e t v e r y t i r e d o f s i t t i n g h y h e r s i s t e r o n  
t h e h a n k a n d o f h a r  i n g n o t h i t g t o d o o n c e o r t w z k e s h e h a d p e e p  
e d i k t o z h e  h o o k h e r s i s t e r w a s r e a d i n  g h u t i I h a  d n o  p i I t  u r e  s h r 
c h n v e r s a t i o n s i n i t a n d w h v t i s t h e u s e o f a h o o k t h o u g h t a l i c e w  
i t h o u t p i q t u r e s o s c o n v ~ r s a t i o n s s r s h e w a s c o n s i d e r i n g f n h e  
r o w n m i o d a s w e c l a s s h e c o u l d f o r t h e h o t d a y m a d e h e r f e e l v e r y  
s l e e p y o n d s t u p i d w h e t h f r t h L ? p l e a s u r e o f m a i i n g a d a h s u c h a i  
g w o u l d h e w o r t h t h e t r o u h l j o f g s t t i n g u p a n z p i c k i n g t h e d a q s ~  
e s w h e n s u d d e n l y a  w h i n e r a h h i t w i t h p i n k e y e s r a n c l o s e h a h e  
r t h e r e w a s n o t h i n g s o d e r y r e m a r k a h l e i n t h a t n o r d i d a l i c e t h i  
n e i t s o v e r j m u a h o u t o f t h e w a y t o h e a r t h e r c h h i t s a y  t o i t s e l f o  
h d e a r o h d e a s  

(a) 

alice was beg i u ning toget verytiredof sitting by hersister onthe hank and of ha r 
ing no th it g todo onceortw z k e shehad peeped i k to z he hook hersister was read 
ing hut ithad no pi1 tures hr c h n ver sation s in it and w h  v t i s thcuseof a hook 
thoughtalice without p i q tures o s conversation s s r shcwas considering f n her 
own m i o d a swec las shecould for the hot day madeher feelvery sleepyand stupi d 
whe th f r the plea sure of m a i ing a d a h sucha i g wouldhe worth theu ou h I j of 
gening up an z pick ing the d a q s i e s whensudden ly a w h  in e rahhit with p in key 
e s r anc 10s e b a her therewas nothing s o der y remark able in that nor d idalice 
thine its over j m u a h outoftheway tohear ther c hhit say toitself ohdear oh d e a s 

( b )  

Figure 3: Again, the same sample of text as in Figure 1, but with one out of 13 
letters randomly incorrect. The noisy text before any redundancy reduction is 
shown in (a); it has HL = 4.26 bits, which is slightly higher than the original text 
because it is less correlated. One of the later stages in redundancy reduction 
is shown in (b); it has entropy per letter Hw/3  = 2.99 bits. Note that the noise 
does not confuse the algorithm into finding false words or word combinations. 

noise is random. In other words, one needs at least some outside knowl- 
edge or supervision. For example, mean squared filtering that uses the 
autocorrelator of an ensemble to filter out noise, can be implemented 
through a supervised perceptron-type algorithm (see Atick and Redlich 
1990b). 

This leads to an important point: purely unsupervised learning based 
strictly on statistics, does not lead to conceptualization. This is due to the 
implicit assumption that every distinguishable input state potentially car- 
ries a different message. In conceptualizing, on the other hand, different 
input states which carry the same useful message are grouped together. 
This grouping requires some further knowledge that distinguishes signal 
from noise, or provides a measure of closeness on the signal space (Ko- 
honen 19841, or provides active supervision as in perceptron learning. 
Also, the information that distinguishes between different members of a 
concept can be thrown away, as in noise filtering. Since this information 
reduction effectively lowers the number of input states, it also simplifies 
the problem of learning and storing statistics. So one challenge is to in- 
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corporate in the present redundancy reduction strategy a controlled or 
supervised information reduction. Some first steps in this direction have 
been taken by Linsker (1989) and by Atick and Redlich (1990a), both 
using the mutual information between the desired scene data and the 
noisy image signal (for a different application of redundancy reduction 
to supervised learning, see Redlich 1992). 
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