26 Sep

数学基本技艺之23、24(上)

23、求解拟齐次方程$\frac{dy}{dx}=x+\frac{x^3}{y}$
24、求解拟齐次方程$\ddot{x}=x^5+x^2\dot{x}$

把这两道题目放在一起说是因为我觉得这两道题目本质上是一样的,当然,不管怎样,24题更复杂一些。在24题中,设$\dot{x}=y$,则$\ddot{x}=y\frac{dy}{dx}$,于是原方程就变成:
$$\frac{dy}{dx}=x^2+\frac{x^5}{y}$$
这样就跟23题的形式差不多了。

点击阅读全文...

7 Mar

轻微的扰动——摄动法简介(3)

微分方程领域大放光彩

虽然微分方程在各个计算领域都能一展才华,不过它最辉煌的光芒无疑绽放于微分方程领域,包括常微分方程和偏微分方程。海王星——“笔尖上发现的行星”——就是摄动法的著名成果,类似的还有冥王星的发现。天体力学家用一颗假设的行星的引力摄动来解释已知行星的异常运动,并由此反推未知行星的轨道。我们已不止一次提到过,一般的三体问题是混沌的,没有精确的解析解。这就要求我们考虑一些近似的方法,这样的方法发展起来就成为了摄动理论。

跟解代数方程一样,摄动法解带有小参数或者大参数的微分方程的基本思想,就是将微分方程的解表达为小参数或大参数的幂级数。当然,这是最直接的,也相当好理解,不过所求得的级数解有可能存在一些性态不好的情况,比如有时原解应该是一个周期运动,但是级数解却出现了诸如$t \sin t$的“长期项”,这是相当不利的,因此也发展出各种技巧来消除这些项。可见,摄动理论是一门应用广泛、集众家所大成的实用理论。下面我们将通过一些实际的例子来阐述这个技巧。

点击阅读全文...

30 Nov

算子与线性常微分方程(下)

不可交换

很自然会想到把这种方法延伸到变系数微分方程的求解,也许有读者回去自己摆弄了一下却总得不到合适的解而感到困惑。在这里群的非Abel性就体现出来了,首先用一个例子来说明一下,我们考虑算子的复合
$$(D-x)(D+x)=D^2-x^2+(Dx-xD)$$

我们要谨慎使用交换律,我们记$[P,Q]=PQ-QP$

其中P和Q是两个算子,此即量子力学中的“对易式”,用来衡量算子P和算子Q的可交换程度,当然,它本身也是一个算子。我们先来求出$[D,x]$给出了什么(要是它是0的话,那就表明运算可以交换了)。究竟它等于什么呢?直接看是看不出的,我们把它作用于一个函数:
$$[D,x]y=(Dx-xD)y=D(xy)-xDy=yDx+xDy-xDy=y$$

由于“近水楼台先得月”,所以$Dxy$表示x先作用于y,然后D再作用于(xy);而$xDy$表示D先作用于y,然后x再作用于Dy。最终我们得到了

点击阅读全文...

30 Nov

算子与线性常微分方程(上)

简介

最近在学习量子力学的时候,无意中涉及到了许多矩阵(线性代数)、群论等知识,并且发现其中有不少相同的思想,其中主要是用算子来表示其对函数的作用和反作用。比如我们可以记$D=\frac{d}{dx}$,那么函数$f(x)$的导数就可以看作是算子D对它的一次作用后的结果,二阶导数则是作用了两次,等等。而反过来,$D^{-1}$就表示这个算子的反作用,它把作用后的函数(像)还原为原来的函数(原像),当然,这不是将求导算子做简单的除法,而是积分运算。用这种思想来解答线性微分方程,有着统一和简洁的美。

线性微分方程是求解一切微分方程的基础,一般来说它形式比较简单,多数情况下我们都可以求出它的通解。在非相对论性量子力学的薛定谔方程中,本质上就是在求解一道二阶偏线性微分方程。另一方面,在许多我们无法求解的非线性系统中,线性解作为一级近似,对于定性分析是极其重要的。

一阶线性常微分方程

这是以下所有微分方程求积的一个基础形式,即$\frac{dy}{dx}+g(x)y=f(x)$的求解。这是通过常数变易法来解答的,其思想跟天体力学中的“摄动法”是一致的,首先在无法求解原微分方程的时候,先忽略掉其中的一些小项,求得一个近似解。即我们先求解
$$\frac{dy}{dx}+g(x)y=0$$

点击阅读全文...

7 Nov

为什么是抛物线?——聚光面研究

很多读者都知道,反射望远镜、射电望远镜、太阳能集热器等都有一个抛物状的面,它们都是利用了抛物面能将平行射入的光汇聚到一个点(焦点)上的性质。如果问为什么抛物面具有此性质,相信很多高中生都可以利用抛物线的相关知识来证明。但是,如果反过来问:为什么具有此性质的曲面是抛物面?相信会难倒一部分读者。我们来尝试寻找这一曲线(由于对称的原因,这个曲面可以看作由曲线旋转而成,因此我们可以研究曲线)。

世上最大单孔径射电望远镜

世上最大单孔径射电望远镜

点击阅读全文...

6 Nov

警察捉贼,追牛问题,导弹跟踪

王二小的牛跑了,当他发现时,牛在他正南方300米。且一直向正西方向匀速的跑,王二小立即追牛,他不是朝着一个固定的方向,而是每时每刻都朝着牛的方向跑,且速度是牛速度的4/3倍。当他追上牛时王二小共跑了多远?

问题分析

米拉斯反潜导弹

米拉斯反潜导弹

咋看起来,追牛和导弹是风牛马不相及的两件事:一个是生活小事,一个是物理问题,怎么能够扯到一块呢?

回想一下平时警察抓小偷的过程。警察不是物理学家,不会也可不能先去研究小偷的逃走路线函数,然后设计最小追赶时间的路程吧?那么,在不能预知小偷逃跑路线的前提下,警察要怎样捉小偷呢?很简单,盯死他!是的,只要你以更快的速度,一直朝着他跑,总能够追到的。继续联想下:要想用导弹跟踪摧毁一首敌舰,不也是只能够采用这种方式吗?回看文章开始的“追牛问题”,本质上不是一样的吗?以下是上海交大提出的导弹跟踪问题:

点击阅读全文...

6 Nov

这个星期对微分方程的认识

这个星期研究了两道微分方程问题:“导弹跟踪”以及“太阳炉”问题。从中我加深了对微分方程的理解,也熟悉了微分方程的相关运算。仅此记录,权当抛砖引玉。

一、微分方程的本质

很多读者都知道,自从牛顿和莱布尼兹发明微积分之后,微积分就迅速地渗透到了几乎所有的学科,后来发展出许多出色的分支,如变分、微分方程等。众所周知,微分方程是解决很多重要问题的工具。不知道各位读者对微分及微分方程的认识如何?其实对于常微分方程而言,它的本质和我们已经学习过的代数方程一样,只不过相互之间的对应运算关系除了常规的加减乘除幂等之外,还多了两个相互关系:微分和积分。例如对于一阶微分方程$\dot{y}=f(x,y)$,也许大家都认为它是一个二元方程,其实不然,这是一个“四个未知数、三道方程”所组成的方程组,我们可以将它写成

$$dy=f(x,y)dx,y=\int dy,x=\int dx$$

点击阅读全文...

3 Oct

《向量》系列——5.平面向量微分方程与复数

首先我们考虑一个复微分方程
$$\dot{z}=f(z,t)\tag{1}$$如果令$z=x+yi,f(z,t)=f(x+yi,t)=g(x,y,t)+i*h(x,y,t)$,则方程对应于
$$\begin{aligned}\dot{x}=g(x,y,t) \\ \dot{y}=h(x,y,t)\end{aligned}$$
这说明,二元微分方程在一定程度上等价于复微分方程。

点击阅读全文...