26 Aug

近乎完美地解决MathJax与Marked的冲突

《让MathJax更好地兼容谷歌翻译和延时加载》我们提到Cool Papers加入了MathJax来解析LaTeX公式,不过万万没想到引发了诸多兼容性问题,虽然部分问题纯粹是笔者的强迫症作祟,但一个尽可能完美的解决方案终究是让人赏心悦目的,所以还是愿意在上面花一点心思。

上一篇文章我们已经解决了MathJax与谷歌翻译、延时加载的兼容性,这篇文章我们则来解决MathJax与Marked的冲突。

问题简述

Markdown是一种轻量级标记语言,允许人们使用易读易写的纯文本格式编写文档,可谓是目前最流行的写作语法之一,Cool Papers中的[Kimi]功能,基本上也是按照Markdown语法输出。然而。Markdown并不是直接面向浏览器的语言,面向浏览器的语言叫做HTML,所以在展示给用户之前,有一个Markdown转HTML的过程(渲染)。

点击阅读全文...

6 Sep

“闭门造车”之多模态思路浅谈(三):位置编码

在前面的文章中,我们曾表达过这样的观点:多模态LLM相比纯文本LLM的主要差异在于,前者甚至还没有形成一个公认为标准的方法论。这里的方法论,不仅包括之前讨论的生成和训练策略,还包括一些基础架构的设计,比如本文要谈的“多模态位置编码”。

对于这个主题,我们之前在《Transformer升级之路:17、多模态位置编码的简单思考》就已经讨论过一遍,并且提出了一个方案(RoPE-Tie)。然而,当时笔者对这个问题的思考仅处于起步阶段,存在细节考虑不周全、认识不够到位等问题,所以站在现在的角度回看,当时所提的方案与完美答案还有明显的距离。

因此,本文我们将自上而下地再次梳理这个问题,并且给出一个自认为更加理想的结果。

多模位置

多模态模型居然连位置编码都没有形成共识,这一点可能会让很多读者意外,但事实上确实如此。对于文本LLM,目前主流的位置编码是RoPE(RoPE就不展开介绍了,假设读者已经熟知),更准确来说是RoPE-1D,因为原始设计只适用于1D序列。后来我们推导了RoPE-2D,这可以用于图像等2D序列,按照RoPE-2D的思路我们可以平行地推广到RoPE-3D,用于视频等3D序列。

点击阅读全文...

14 Nov

当Batch Size增大时,学习率该如何随之变化?

随着算力的飞速进步,有越多越多的场景希望能够实现“算力换时间”,即通过堆砌算力来缩短模型训练时间。理想情况下,我们希望投入$n$倍的算力,那么达到同样效果的时间则缩短为$1/n$,此时总的算力成本是一致的。这个“希望”看上去很合理和自然,但实际上并不平凡,即便我们不考虑通信之类的瓶颈,当算力超过一定规模或者模型小于一定规模时,增加算力往往只能增大Batch Size。然而,增大Batch Size一定可以缩短训练时间并保持效果不变吗?

这就是接下来我们要讨论的话题:当Batch Size增大时,各种超参数尤其是学习率该如何调整,才能保持原本的训练效果并最大化训练效率?我们也可以称之为Batch Size与学习率之间的Scaling Law。

方差视角

直觉上,当Batch Size增大时,每个Batch的梯度将会更准,所以步子就可以迈大一点,也就是增大学习率,以求更快达到终点,缩短训练时间,这一点大体上都能想到。问题就是,增大多少才是最合适的呢?

点击阅读全文...

30 Oct

低秩近似之路(四):ID

这篇文章的主角是ID(Interpolative Decomposition),中文可以称之为“插值分解”,它同样可以理解为是一种具有特定结构的低秩分解,其中的一侧是该矩阵的若干列(当然如果你偏好于行,那么选择行也没什么问题),换句话说,ID试图从一个矩阵中找出若干关键列作为“骨架”(通常也称作“草图”)来逼近原始矩阵。

可能很多读者都未曾听说过ID,即便维基百科也只有几句语焉不详的介绍(链接),但事实上,ID跟SVD一样早已内置在SciPy之中(参考scipy.linalg.interpolative),这侧面印证了ID的实用价值。

基本定义

前三篇文章我们分别介绍了伪逆SVDCR近似,它们都可以视为寻找特定结构的低秩近似:
\begin{equation}\mathop{\text{argmin}}_{\text{rank}(\tilde{\boldsymbol{M}})\leq r}\Vert \tilde{\boldsymbol{M}} - \boldsymbol{M}\Vert_F^2\end{equation}

点击阅读全文...

22 Nov

继续回到我们的扩散系列。在《生成扩散模型漫谈(二十五):基于恒等式的蒸馏(上)》中,我们介绍了SiD(Score identity Distillation),这是一种不需要真实数据、也不需要从教师模型采样的扩散模型蒸馏方案,其形式类似GAN,但有着比GAN更好的训练稳定性。

SiD的核心是通过恒等变换来为学生模型构建更好的损失函数,这一点是开创性的,同时也遗留了一些问题。比如,SiD对损失函数的恒等变换是不完全的,如果完全变换会如何?如何从理论上解释SiD引入的$\lambda$的必要性?上个月放出的《Flow Generator Matching》(简称FGM)成功从更本质的梯度角度解释了$\lambda=0.5$的选择,而受到FGM启发,笔者则进一步发现了$\lambda = 1$的一种解释。

接下来我们将详细介绍SiD的上述理论进展。

点击阅读全文...