9 Aug

素数之美2:Bertrand假设的证明

有了上一篇文章的$\prod\limits_{p\leq n}p < 4^{n-1}$的基础,我们其实已经很接近Bertrand假设的证明了。Bertrand假设的证明基于对二项式系数$C_n^{2n}$的素因子次数的细致考察,而在本篇文章中,我们先得到一个关于素数之积的下限公式,然后由此证明一个比Bertrand假设稍微弱一点的假设。最后,则通过一个简单的技巧,将我们的证明推动至Bertrand假设。

二项式系数的素因子

首先,我们考察$n!$中的素因子$p$的次数,结果是被称为Legendre定理的公式:

$n$中素因子$p$的次数恰好为$\sum\limits_{k\geq 1}\left\lfloor\frac{n}{p^k}\right\rfloor$。

证明很简单,因为$n!=1\times 2\times 3\times 4\times \dots \times n$,每隔$p$就有一个$p$的倍数,每隔$p^2$就有一个$p^2$的倍数,每隔$p^3$就有一个$p^3$的倍数,每增加一次幂,将多贡献一个$p$因子,所以把每个间隔数叠加即可。注意该和虽然写成无穷形式,但是非零项是有限的。

点击阅读全文...

22 Dec

将多项式分解为两个不可约多项式之和

在高等代数的多项式一章中,通常会有这样的一道练习题:

证明任意有理数域上的多项式都能够表示为两个有理数域上的不可约多项式之和。

这是道简单的练习题,证明方法有多种。首先来介绍一个巧妙的证法。

一个巧妙证明

有理数域上的多项式问题等价于整数域上的多项式问题,因此,只需要对整数域上的多项式进行证明(这步转换使得我们可以使用艾森斯坦判别法)。设$f(x)$是整数域上的一个$n$次多项式:
$$f(x)=a_n x^n+a_{n-1} x^{n-1}+\dots+a_1 x+a_0$$
我们只需要注意到
$$p f(x)=\left[p f(x)+x^n+p\right]-(x^{n}+p)$$

点击阅读全文...

16 Jan

勒贝格(Lebesgue)控制收敛定理

实变函数中有一个勒贝格控制收敛定理,一般认为它是判断积分和取极限可交换的很好用的方法。勒贝格控制收敛定理是说,如果定义在集合$E$上的函数列$\left\{f_n(x)\right\}$满足$|f_n(x)|\leq F(x)$,而$F(x)$在$E$上可积,那么积分和取极限就可以交换,即
$$\lim_{n\to\infty}\left(\int_E f_n (x)dx\right)=\int_E \left(\lim_{n\to\infty}f_n (x)\right)dx$$
本文不打算谈该定理的证明,只是谈谈该定理的应用相关的话题。首先,请有兴趣的读者,做做以下题目:
$$\lim_{n\to\infty}\left(\int_0^1 \frac{n^2 x}{1+n^4 x^4}dx\right)$$

点击阅读全文...

20 Jan

有限素域上的乘法群是循环群

对于任意的素数$p$,集合$\mathbb{Z}_p=\{0,1,2,\dots,p-1\}$在模$p$的加法和乘法之下,构成一个域,这是学过抽象代数或者初等数论的读者都会知道的一个事实。其中,根据域的定义,$\mathbb{Z}_p$首先要在模$p$的加法下成为一个交换群,而且由于$\mathbb{Z}_p$的特殊性,它还是一个循环群,这也是比较平凡的事实。但是,考虑乘法呢?

首先,$0$是没有逆元的,我们考虑乘法,是在$\mathbb{Z}^\cdot _p=\mathbb{Z}_p \verb|\| \{0\}=\{1,2,\dots,p-1\}$上考虑的。如果我说,$\mathbb{Z}^\cdot _p$在模$p$之下的乘法也作成一个循环群,这结论就不是很平凡的了!然而这确实是事实,对于所有的素数$p$均成立。而有了这事实,数论中的一些结论就会相当显然了,比如当$d\mid (p-1)$时,$\mathbb{Z}_p$中的$d$次剩余就只有$\frac{p-1}{d}$个了,这是循环群的基本结论。

在《数学天书中的证明》一书中,有该结论的一个证明,但这个证明是存在性的,而我在另外一本书上也看到过类似的存在性证明,也就是说,似乎流行的证明都是存在性的,它告诉我们$\mathbb{Z}^\cdot _p$是一个循环群,但是没告诉我们怎么找到它的生成元。而事实上,高斯在他的《算术探索》中就给出了一个构造性的证明。(在数论中,本文的结论是“原根”那一章的基本知识。)下面笔者正是要重复高斯的证明,供读者参考。

点击阅读全文...

28 Mar

有趣的求极限题:随心所欲的放缩

昨天一好友问我以下题目,求证:
$$\lim_{n\to\infty} \frac{1^n + 2^n +\dots + n^n}{n^n}=\frac{e}{e-1}$$
将解答过程简单记录一下。

求解

首先可以注意到,当$n$充分大时,
$$\frac{1^n + 2^n +\dots + n^n}{n^n}=\left(\frac{1}{n}\right)^n+\left(\frac{2}{n}\right)^n+\dots+\left(\frac{n}{n}\right)^n$$
的主要项都集中在最后面那几项,因此,可以把它倒过来计算
$$\begin{aligned}\frac{1^n + 2^n +\dots + n^n}{n^n}=&\left(\frac{1}{n}\right)^n+\left(\frac{2}{n}\right)^n+\dots+\left(\frac{n}{n}\right)^n\\
=&\left(\frac{n}{n}\right)^n+\dots+\left(\frac{2}{n}\right)^n+\left(\frac{1}{n}\right)^n\end{aligned}$$

点击阅读全文...

19 Apr

柯西命题:盯着它到显然成立为止!

数学分析中数列极限部分,有一个很基本的“柯西命题”:

如果$\lim_{n\to\infty} x_n=a$,则
$$\lim_{n\to\infty}\frac{x_1+x_2+\dots+x_n}{n}=a$$

本文所要谈的便是这个命题,当然还包括类似的一些题目。

柯西命题的证明

柯西命题的证明并不难,只需要根据极限收敛的定义,由于$\lim_{n\to\infty} x_n=a$,所以任意给定$\varepsilon > 0$,存在足够大的$N$,使得对于任意的$n > N$,都有
$$\left|x_n - a\right| < \varepsilon/2\quad(\forall n > N)$$

点击阅读全文...

20 Mar

[欧拉数学]伯努利级数及相关级数的总结

最近在算路径积分的时候,频繁地遇到了以下两种无穷级数:
$$\sum_n \frac{1}{n^2\pm\omega^2}\quad \text{和} \quad \prod_n \left(1\pm\frac{\omega^2}{n^2}\right)$$
当然,直接用Mathematica可以很干脆地算出结果来,但是我还是想知道为什么,至少大概地知道。

伯努利级数

当$\omega=0$的时候,第一个级数变为著名的伯努利级数
$$\sum_n \frac{1}{n^2}=1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\dots$$
既然跟伯努利级数有关,那么很自然想到,从伯努利级数的求和入手。

点击阅读全文...

19 Dec

【备忘】Python中断多重循环的几种思路

跳出单循环

不管是什么编程语言,都有可能会有跳出循环的需求,比如枚举时,找到一个满足条件的数就终止。跳出单循环是很简单的,比如

for i in range(10):
    if i > 5:
        print i
        break

然而,我们有时候会需要跳出多重循环,而break只能够跳出一层循环,比如

for i in range(10):
    for j in range(10):
        if i+j > 5:
            print i,j
            break

这样的代码并非说找到一组i+j > 5就停止,而是连续找到10组,因为break只跳出了for j in range(10)这一重循环。那么,怎么才能跳出多重呢?在此记录备忘一下。

点击阅读全文...