利用CUR分解加速交互式相似度模型的检索
By 苏剑林 | 2022-11-02 | 29528位读者 | 引用文本相似度有“交互式”和“特征式”两种做法,想必很多读者对此已经不陌生,之前笔者也写过一篇文章《CoSENT(二):特征式匹配与交互式匹配有多大差距?》来对比两者的效果。总的来说,交互式相似度效果通常会好些,但直接用它来做大规模检索是不现实的,而特征式相似度则有着更快的检索速度,以及稍逊一筹的效果。
因此,如何在保证交互式相似度效果的前提下提高它的检索速度,是学术界一直都有在研究的课题。近日,论文《Efficient Nearest Neighbor Search for Cross-Encoder Models using Matrix Factorization》提出了一份新的答卷:CUR分解。
CoSENT(三):作为交互式相似度的损失函数
By 苏剑林 | 2022-11-09 | 32560位读者 | 引用在《CoSENT(一):比Sentence-BERT更有效的句向量方案》中,笔者提出了名为“CoSENT”的有监督句向量方案,由于它是直接训练cos相似度的,跟评测目标更相关,因此通常能有着比Sentence-BERT更好的效果以及更快的收敛速度。在《CoSENT(二):特征式匹配与交互式匹配有多大差距?》中我们还比较过它跟交互式相似度模型的差异,显示它在某些任务上的效果还能直逼交互式相似度模型。
然而,当时笔者是一心想找一个更接近评测目标的Sentence-BERT替代品,所以结果都是面向有监督句向量的,即特征式相似度模型。最近笔者突然反应过来,CoSENT其实也能作为交互式相似度模型的损失函数。那么它跟标准选择交叉熵相比孰优孰劣呢?本文来补充这部分实验。
梯度视角下的LoRA:简介、分析、猜测及推广
By 苏剑林 | 2023-04-17 | 74284位读者 | 引用随着ChatGPT及其平替的火热,各种参数高效(Parameter-Efficient)的微调方法也“水涨船高”,其中最流行的方案之一就是本文的主角LoRA了,它出自论文《LoRA: Low-Rank Adaptation of Large Language Models》。LoRA方法上比较简单直接,而且也有不少现成实现,不管是理解还是使用都很容易上手,所以本身也没太多值得细写的地方了。
然而,直接实现LoRA需要修改网络结构,这略微麻烦了些,同时LoRA给笔者的感觉是很像之前的优化器AdaFactor,所以笔者的问题是:能否从优化器角度来分析和实现LoRA呢?本文就围绕此主题展开讨论。
方法简介
以往的一些结果(比如《Exploring Aniversal Intrinsic Task Subspace via Prompt Tuning》)显示,尽管预训练模型的参数量很大,但每个下游任务对应的本征维度(Intrinsic Dimension)并不大,换句话说,理论上我们可以微调非常小的参数量,就能在下游任务取得不错的效果。
LoRA借鉴了上述结果,提出对于预训练的参数矩阵$W_0\in\mathbb{R}^{n\times m}$,我们不去直接微调$W_0$,而是对增量做低秩分解假设:
\begin{equation}W = W_0 + A B,\qquad A\in\mathbb{R}^{n\times r},B\in\mathbb{R}^{r\times m}\end{equation}
Naive Bayes is all you need ?
By 苏剑林 | 2023-06-08 | 47417位读者 | 引用很抱歉,起了这么个具有标题党特征的题目。在写完《NBCE:使用朴素贝叶斯扩展LLM的Context处理长度》之后,笔者就觉得朴素贝叶斯(Naive Bayes)跟Attention机制有很多相同的特征,后来再推导了一下发现,Attention机制其实可以看成是一种广义的、参数化的朴素贝叶斯。既然如此,“Attention is All You Need”不也就意味着“Naive Bayes is all you need”了?这就是本文标题的缘由。
接下来笔者将介绍自己的思考过程,分析如何从朴素贝叶斯角度来理解Attention机制。
朴素贝叶斯
本文主要考虑语言模型,它要建模的是$p(x_t|x_1,\cdots,x_{t-1})$。根据贝叶斯公式,我们有
\begin{equation}p(x_t|x_1,\cdots,x_{t-1}) = \frac{p(x_1,\cdots,x_{t-1}|x_t)p(x_t)}{p(x_1,\cdots,x_{t-1})}\propto p(x_1,\cdots,x_{t-1}|x_t)p(x_t)\end{equation}
为什么现在的LLM都是Decoder-only的架构?
By 苏剑林 | 2023-03-17 | 109058位读者 | 引用LLM是“Large Language Model”的简写,目前一般指百亿参数以上的语言模型,主要面向文本生成任务。跟小尺度模型(10亿或以内量级)的“百花齐放”不同,目前LLM的一个现状是Decoder-only架构的研究居多,像OpenAI一直坚持Decoder-only的GPT系列就不说了,即便是Google这样的并非全部押注在Decoder-only的公司,也确实投入了不少的精力去研究Decoder-only的模型,如PaLM就是其中之一。那么,为什么Decoder-only架构会成为LLM的主流选择呢?
知乎上也有同款问题《为什么现在的LLM都是Decoder only的架构?》,上面的回答大多数聚焦于Decoder-only在训练效率和工程实现上的优势,那么它有没有理论上的优势呢?本文试图从这个角度进行简单的分析。
统一视角
需要指出的是,笔者目前训练过的模型,最大也就是10亿级别的,所以从LLM的一般概念来看是没资格回答这个问题的,下面的内容只是笔者根据一些研究经验,从偏理论的角度强行回答一波。文章多数推论以自己的实验结果为引,某些地方可能会跟某些文献的结果冲突,请读者自行取舍。
《为什么现在的LLM都是Decoder-only的架构?》FAQ
By 苏剑林 | 2023-03-20 | 51822位读者 | 引用上周笔者写了《为什么现在的LLM都是Decoder-only的架构?》,总结了一下我在这个问题上的一些实验结论和猜测。果然是热点问题流量大,paperweekly的转发没多久阅读量就破万了,知乎上点赞数也不少。在几个平台上,陆陆续续收到了读者的一些意见或者疑问,总结了其中一些有代表性的问题,做成了本篇FAQ,希望能进一步帮助大家解决疑惑。
回顾
在《为什么现在的LLM都是Decoder-only的架构?》中,笔者对GPT和UniLM两种架构做了对比实验,然后结合以往的研究经历,猜测了如下结论:
1、输入部分的注意力改为双向不会带来收益,Encoder-Decoder架构的优势很可能只是源于参数翻倍;
2、双向注意力没有带来收益,可能是因为双向注意力的低秩问题导致效果下降。
所以,基于这两点推测,我们得到结论:
在同等参数量、同等推理成本下,Decoder-only架构是最优选择。
如何度量数据的稀疏程度?
By 苏剑林 | 2023-05-05 | 32989位读者 | 引用在机器学习中,我们经常会谈到稀疏性,比如我们经常说注意力矩阵通常是很稀疏的。然而,不知道大家发现没有,我们似乎从没有给出过度量稀疏程度的标准方法。也就是说,以往我们关于稀疏性的讨论,仅仅是直观层面的感觉,并没有过定量分析。那么问题来了,稀疏性的度量有标准方法了吗?
经过搜索,笔者发现确实是有一些可用的指标,比如$l_1/l_2$、熵等,但由于关注视角的不同,在稀疏性度量方面并没有标准答案。本文简单记录一下笔者的结果。
基本结果
狭义上来讲,“稀疏”就是指数据中有大量的零,所以最简单的稀疏性指标就是统计零的比例。但如果仅仅是这样的话,注意力矩阵就谈不上稀疏了,因为softmax出来的结果一定是正数。所以,有必要推广稀疏的概念。一个朴素的想法是统计绝对值不超过$\epsilon$的元素比例,但这个$\epsilon$怎么确定呢?
基于量子化假设推导模型的尺度定律(Scaling Law)
By 苏剑林 | 2023-05-18 | 36783位读者 | 引用尺度定律(Scaling Law),指的是模型能力与模型尺度之间的渐近关系。具体来说,模型能力我们可以简单理解为模型的损失函数,模型尺度可以指模型参数量、训练数据量、训练步数等,所谓尺度定律,就是研究损失函数跟参数量、数据量、训练步数等变量的大致关系。《Scaling Laws for Neural Language Models》、《Training Compute-Optimal Large Language Models》等工作的实验结果表明,神经网络的尺度定律多数呈现“幂律(Power law)”的形式。
为什么会是幂律呢?能否从理论上解释呢?论文《The Quantization Model of Neural Scaling》基于“量子化”假设给出了一个颇为有趣的推导。本文一同来欣赏一下。
最近评论