变分自编码器(七):球面上的VAE(vMF-VAE)
By 苏剑林 | 2021-05-17 | 147338位读者 | 引用在《变分自编码器(五):VAE + BN = 更好的VAE》中,我们讲到了NLP中训练VAE时常见的KL散度消失现象,并且提到了通过BN来使得KL散度项有一个正的下界,从而保证KL散度项不会消失。事实上,早在2018年的时候,就有类似思想的工作就被提出了,它们是通过在VAE中改用新的先验分布和后验分布,来使得KL散度项有一个正的下界。
该思路出现在2018年的两篇相近的论文中,分别是《Hyperspherical Variational Auto-Encoders》和《Spherical Latent Spaces for Stable Variational Autoencoders》,它们都是用定义在超球面的von Mises–Fisher(vMF)分布来构建先后验分布。某种程度上来说,该分布比我们常用的高斯分布还更简单和有趣~
KL散度消失
我们知道,VAE的训练目标是
\begin{equation}\mathcal{L} = \mathbb{E}_{x\sim \tilde{p}(x)} \Big[\mathbb{E}_{z\sim p(z|x)}\big[-\log q(x|z)\big]+KL\big(p(z|x)\big\Vert q(z)\big)\Big]
\end{equation}
概率视角下的线性模型:逻辑回归有解析解吗?
By 苏剑林 | 2021-07-22 | 83465位读者 | 引用我们知道,线性回归是比较简单的问题,它存在解析解,而它的变体逻辑回归(Logistic Regression)却没有解析解,这不能不说是一个遗憾。因为逻辑回归虽然也叫“回归”,但它实际上是用于分类问题的,而对于很多读者来说分类比回归更加常见。准确来说,我们说逻辑回归没有解析解,说的是“最大似然估计下逻辑回归没有解析解”。那么,这是否意味着,如果我们不用最大似然估计,是否能找到一个可用的解析解呢?
本文将会从非最大似然的角度,推导逻辑回归的一个解析解,简单的实验表明它效果不逊色于梯度下降求出来的最大似然解。此外,这个解析解还易于推广到单层Softmax多分类模型。
Adam的epsilon如何影响学习率的Scaling Law?
By 苏剑林 | 2024-11-18 | 20387位读者 | 引用上一篇文章《当Batch Size增大时,学习率该如何随之变化?》我们从多个角度讨论了学习率与Batch Size之间的缩放规律,其中对于Adam优化器我们采用了SignSGD近似,这是分析Adam优化器常用的手段。那么一个很自然的问题就是:用SignSGD来近似Adam究竟有多科学呢?
我们知道,Adam优化器的更新量分母会带有一个$\epsilon$,初衷是预防除零错误,所以其值通常很接近于零,以至于我们做理论分析的时候通常选择忽略掉它。然而,当前LLM的训练尤其是低精度训练,我们往往会选择偏大的$\epsilon$,这导致在训练的中、后期$\epsilon$往往已经超过梯度平方大小,所以$\epsilon$的存在事实上已经不可忽略。
因此,这篇文章我们试图探索$\epsilon$如何影响Adam的学习率与Batch Size的Scaling Law,为相关问题提供一个参考的计算方案。
“Cool Papers + 站内搜索”的一些新尝试
By 苏剑林 | 2024-08-12 | 17616位读者 | 引用在《Cool Papers更新:简单搭建了一个站内检索系统》这篇文章中,我们介绍了Cool Papers新增的站内搜索系统。搜索系统的目的,自然希望能够帮助用户快速找到他们需要的论文。然而,如何高效地检索到对自己有价值的结果,并不是一件简单的事情,这里边往往需要一些技巧,比如精准提炼关键词。
这时候算法的价值就体现出来了,有些步骤人工来做会比较繁琐,但用算法来却很简单。所以接下来,我们将介绍几点通过算法来提高Cool Papers的搜索和筛选论文效率的新尝试。
相关论文
站内搜索背后的技术是全文检索引擎(Full-text Search Engine),简单来说,这就是一个基于关键词匹配的搜索算法,其相似度指标是BM25。
域名Sci-Cn.cn转让...
By 苏剑林 | 2009-12-14 | 25721位读者 | 引用最近的很多篇文章都是数论内容,属于纯数学的范畴了,对于很多只爱好物理或应用数学的读者可能会看得头晕了。今天我们来谈些不那么抽象的东西,我们来谈谈风筝,并来分析一下风筝的飞行力学。
爱情就像放风筝,线不能来得太紧,也不能拉得太松,你只会给对方飞翔的空间,他/她始终会回到你身边,因为有一条线系着双方。
风筝,在我们这个地方叫做纸鸢,相信大家童年时一定会放过。笔者小时候放风筝时,已经是小学五年级之前的事了。这个暑假突然童心一起,凭着小时候的回忆,简单做了个风筝来玩,居然真的飞起来了!兴奋之余,与大家分享一下。如今再来放风筝,真心感觉到放风筝也有很多技巧,让风筝飞,还不是件容易的事情呢,真可谓人生处处皆学问呀。上面关于风筝的比喻,正是放风筝的真实写照吧。
风筝可以说是人类摆脱地球重力的最原始尝试吧,跟发射宇宙飞船的火箭不同,风筝是借助风力来抵抗重力,严格来讲,即便是现在的飞机,也离不开这个原理(我们最后会谈到)。简单来讲,风筝就是用轻的支架撑开一个轻盈的平面,然后系上一个线圈。我们简单做一个风筝,只需要一张报纸,两条竹篾和一点透明胶,十分钟内就可以完成一个。当然,现在已经有各种各样的好看的风筝,甚至还有龙形的风筝,但是,自己动手简单做一个风筝,还是相当好玩的。
风筝自然是借助风力飞起来的,可是为什么风筝得用绳子牵着才能飞得更高、绳断了反而掉下来?风大多时,才适合放风筝?飞机又是怎么飞起来的?下面我们试着分析这些问题。
OCR技术浅探:2. 背景与假设
By 苏剑林 | 2016-06-17 | 40342位读者 | 引用研究背景
关于光学字符识别(Optical Character Recognition, 下面都简称OCR),是指将图像上的文字转化为计算机可编辑的文字内容,众多的研究人员对相关的技术研究已久,也有不少成熟的OCR技术和产品产生,比如汉王OCR、ABBYY FineReader、Tesseract OCR等. 值得一提的是,ABBYY FineReader不仅正确率高(包括对中文的识别),而且还能保留大部分的排版效果,是一个非常强大的OCR商业软件.
然而,在诸多的OCR成品中,除了Tesseract OCR外,其他的都是闭源的、甚至是商业的软件,我们既无法将它们嵌入到我们自己的程序中,也无法对其进行改进. 开源的唯一选择是Google的Tesseract OCR,但它的识别效果不算很好,而且中文识别正确率偏低,有待进一步改进.
综上所述,不管是为了学术研究还是实际应用,都有必要对OCR技术进行探究和改进. 我们队伍将完整的OCR系统分为“特征提取”、“文字定位”、“光学识别”、“语言模型”四个方面,逐步进行解决,最终完成了一个可用的、完整的、用于印刷文字的OCR系统. 该系统可以初步用于电商、微信等平台的图片文字识别,以判断上面信息的真伪.
研究假设
在本文中,我们假设图像的文字部分有以下的特征:
最近评论