“让Keras更酷一些!”:小众的自定义优化器
By 苏剑林 | 2018-09-08 | 85045位读者 | 引用沿着之前的《“让Keras更酷一些!”:精巧的层与花式的回调》写下去~
今天我们来看一个小众需求:自定义优化器。
细想之下,不管用什么框架,自定义优化器这个需求可谓真的是小众中的小众。一般而言,对于大多数任务我们都可以无脑地直接上Adam,而调参炼丹高手一般会用SGD来调出更好的效果,换言之不管是高手新手,都很少会有自定义优化器的需求。
那这篇文章还有什么价值呢?有些场景下会有一点点作用。比如通过学习Keras中的优化器写法,你可以对梯度下降等算法有进一步的认识,你还可以顺带看到Keras的源码是多么简洁优雅。此外,有时候我们可以通过自定义优化器来实现自己的一些功能,比如给一些简单的模型(例如Word2Vec)重写优化器(直接写死梯度,而不是用自动求导),可以使得算法更快;自定义优化器还可以实现诸如“软batch”的功能。
Keras优化器
我们首先来看Keras中自带优化器的代码,位于:
https://github.com/keras-team/keras/blob/master/keras/optimizers.py
“让Keras更酷一些!”:随意的输出和灵活的归一化
By 苏剑林 | 2019-01-27 | 100719位读者 | 引用继续“让Keras更酷一些!”系列,让Keras来得更有趣些吧~
这次围绕着Keras的loss、metric、权重和进度条进行展开。
可以不要输出
一般我们用Keras定义一个模型,是这样子的:
x_in = Input(shape=(784,))
x = x_in
x = Dense(100, activation='relu')(x)
x = Dense(10, activation='softmax')(x)
model = Model(x_in, x)
model.compile(loss='categorical_crossentropy ',
optimizer='adam',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
“让Keras更酷一些!”:分层的学习率和自由的梯度
By 苏剑林 | 2019-03-10 | 98362位读者 | 引用高举“让Keras更酷一些!”大旗,让Keras无限可能~
今天我们会用Keras做到两件很重要的事情:分层设置学习率和灵活操作梯度。
首先是分层设置学习率,这个用途很明显,比如我们在fine tune已有模型的时候,有些时候我们会固定一些层,但有时候我们又不想固定它,而是想要它以比其他层更低的学习率去更新,这个需求就是分层设置学习率了。对于在Keras中分层设置学习率,网上也有一定的探讨,结论都是要通过重写优化器来实现。显然这种方法不论在实现上还是使用上都不友好。
然后是操作梯度。操作梯度一个最直接的例子是梯度裁剪,也就是把梯度控制在某个范围内,Keras内置了这个方法。但是Keras内置的是全局的梯度裁剪,假如我要给每个梯度设置不同的裁剪方式呢?甚至我有其他的操作梯度的思路,那要怎么实施呢?不会又是重写优化器吧?
本文就来为上述问题给出尽可能简单的解决方案。
“让Keras更酷一些!”:中间变量、权重滑动和安全生成器
By 苏剑林 | 2019-04-28 | 99220位读者 | 引用继续“让Keras更酷一些”之旅。
今天我们会用Keras实现灵活地输出任意中间变量,还有无缝地进行权重滑动平均,最后顺便介绍一下生成器的进程安全写法。
首先是输出中间变量。在自定义层时,我们可能希望查看中间变量,这些需求有些是比较容易实现的,比如查看中间某个层的输出,只需要将截止到这个层的部分模型保存为一个新模型即可,但有些需求是比较困难的,比如在使用Attention层时我们可能希望查看那个Attention矩阵的值,如果用构建新模型的方法则会非常麻烦。而本文则给出一种简单的方法,彻底满足这个需求。
接着是权重滑动平均。权重滑动平均是稳定、加速模型训练甚至提升模型效果的一种有效方法,很多大型模型(尤其是GAN)几乎都用到了权重滑动平均。一般来说权重滑动平均是作为优化器的一部分,所以一般需要重写优化器才能实现它。本文介绍一个权重滑动平均的实现,它可以无缝插入到任意Keras模型中,不需要自定义优化器。
至于生成器的进程安全写法,则是因为Keras读取生成器的时候,用到了多进程,如果生成器本身也包含了一些多进程操作,那么可能就会导致异常,所以需要解决这个这个问题。
“让Keras更酷一些!”:层中层与mask
By 苏剑林 | 2019-07-16 | 145452位读者 | 引用这一篇“让Keras更酷一些!”将和读者分享两部分内容:第一部分是“层中层”,顾名思义,是在Keras中自定义层的时候,重用已有的层,这将大大减少自定义层的代码量;另外一部分就是应读者所求,介绍一下序列模型中的mask原理和方法。
层中层
在《“让Keras更酷一些!”:精巧的层与花式的回调》一文中我们已经介绍过Keras自定义层的基本方法,其核心步骤是定义build
和call
两个函数,其中build
负责创建可训练的权重,而call
则定义具体的运算。
拒绝重复劳动
经常用到自定义层的读者可能会感觉到,在自定义层的时候我们经常在重复劳动,比如我们想要增加一个线性变换,那就要在build
中增加一个kernel
和bias
变量(还要自定义变量的初始化、正则化等),然后在call
里边用K.dot
来执行,有时候还需要考虑维度对齐的问题,步骤比较繁琐。但事实上,一个线性变换其实就是一个不加激活函数的Dense
层罢了,如果在自定义层时能重用已有的层,那显然就可以大大节省代码量了。
“让Keras更酷一些!”:精巧的层与花式的回调
By 苏剑林 | 2018-08-06 | 165561位读者 | 引用Keras伴我走来
回想起进入机器学习领域的这两三年来,Keras是一直陪伴在笔者的身边。要不是当初刚掉进这个坑时碰到了Keras这个这么易用的框架,能快速实现我的想法,我也不确定我是否能有毅力坚持下来,毕竟当初是theano、pylearn、caffe、torch等的天下,哪怕在今天它们对我来说仍然像天书一般。
后来为了拓展视野,我也去学习了一段时间的tensorflow,用纯tensorflow写过若干程序,但不管怎样,仍然无法割舍Keras。随着对Keras的了解的深入,尤其是花了一点时间研究过Keras的源码后,我发现Keras并没有大家诟病的那样“欠缺灵活性”。事实上,Keras那精巧的封装,可以让我们轻松实现很多复杂的功能。我越来越感觉,Keras像是一件非常精美的艺术品,充分体现了Keras的开发者们深厚的创作功力。
本文介绍Keras中自定义模型的一些内容,相对而言,这属于Keras进阶的内容,刚入门的朋友请暂时忽略。
层的自定义
这里介绍Keras中自定义层及其一些运用技巧,在这之中我们可以看到Keras层的精巧之处。
“让Keras更酷一些!”:层与模型的重用技巧
By 苏剑林 | 2019-09-29 | 103505位读者 | 引用今天我们继续来深挖Keras,再次体验Keras那无与伦比的优雅设计。这一次我们的焦点是“重用”,主要是层与模型的重复使用。
所谓重用,一般就是奔着两个目标去:一是为了共享权重,也就是说要两个层不仅作用一样,还要共享权重,同步更新;二是避免重写代码,比如我们已经搭建好了一个模型,然后我们想拆解这个模型,构建一些子模型等。
基础
事实上,Keras已经为我们考虑好了很多,所以很多情况下,掌握好基本用法,就已经能满足我们很多需求了。
层的重用
层的重用是最简单的,将层初始化好,存起来,然后反复调用即可:
x_in = Input(shape=(784,))
x = x_in
layer = Dense(784, activation='relu') # 初始化一个层,并存起来
x = layer(x) # 第一次调用
x = layer(x) # 再次调用
x = layer(x) # 再次调用
用时间换取效果:Keras梯度累积优化器
By 苏剑林 | 2019-07-08 | 78093位读者 | 引用现在Keras中你也可以用小的batch size实现大batch size的效果了——只要你愿意花$n$倍的时间,可以达到$n$倍batch size的效果,而不需要增加显存。
Github地址:https://github.com/bojone/accum_optimizer_for_keras
扯淡
在一两年之前,做NLP任务都不用怎么担心OOM问题,因为相比CV领域的模型,其实大多数NLP模型都是很浅的,极少会显存不足。幸运或者不幸的是,Bert出世了,然后火了。Bert及其后来者们(GPT-2、XLNET等)都是以足够庞大的Transformer模型为基础,通过足够多的语料预训练模型,然后通过fine tune的方式来完成特定的NLP任务。
最近评论