19 Aug

势能最小问题的探讨

本文我们来探讨下列积分的极值曲线:
$$S=\int f(x,y)\sqrt{dx^2+dy^2}=\int f(x,y)ds$$

这本质上也是一个短程线问题。但是它形式比较简答,物理含义也更加明显。比如,如果$f(x,y)$是势函数的话,那么这就是一个求势能最小的二维问题;如果$f(x,y)$是摩擦力函数,那么这就是寻找摩擦力最小的路径问题。不管是哪一种,该问题都有相当的实用价值。下面将其变分:

$$\begin{aligned} \delta S =&\int \delta[f(x,y)\sqrt{dx^2+dy^2}] \\ =&\int [ds\delta f(x,y)+f(x,y)\frac{\delta (dx^2+dy^2)}{2ds}]\\ =&\int ds(\frac{\partial f}{\partial x}\delta x+\frac{\partial}{\partial y}\delta y)+f \frac{dx d(\delta x)+dy d(\delta y)}{ds} \\=&\int ds(\frac{\partial f}{\partial x}\delta x+\frac{\partial}{\partial y}\delta y)+f \frac{dx}{ds} d(\delta x)+\frac{dy}{ds} d(\delta y) \end{aligned}$$

点击阅读全文...

28 Dec

矩阵描述三维空间旋转

本节简单介绍用矩阵来描述旋转。在二维平面上,复数无疑是描述旋转的最佳工具;然而推广到三维空间中,却要动用到“四元数”了。为了证明四元数的相关结论,我们需要三维旋转的矩阵描述。最一般的旋转运动为:绕某一根轴旋转$\theta$角度。这样我们就需要三个参数来描述它:确定一根轴至少需要两个参数,确定角度需要一个参数。因此,如果要用“数”来描述三维空间的伸缩和旋转的话,“三元数”显然是不够的,完成这一目的至少需要四元数。这也从另外一个角度反映了三元数的不存在性。

矩阵方法
首先我们认识到,如果旋转轴是坐标轴之一,那么旋转矩阵将是最简单的,比如向量$\boldsymbol{x}=(x_0,y_0,z_0)^{T}$绕$z$轴逆时针旋转$\theta$角后的坐标就可以描述为
$$\begin{equation}
\boldsymbol{R}_{\theta}\boldsymbol{x}\end{equation}$$

点击阅读全文...

29 Dec

有质动力:倒立单摆的稳定性

前几天在“宇宙的心弦”浏览网页时,发现他更新了一篇很有趣的文章,叫《倒立单摆的稳定性与Ponderomotive Force》(果然,物理系的能接触到各种各样有趣的现象),里边谈到通过施加一个运动在单摆上面,倒立的单摆也可以是稳定的。这勾起了我的兴趣,遂也计算了一番。

点击阅读全文...

27 Jun

Project Euler 454 :五天攻下“擂台”

进入期末了,很多同学都开始复习了,这学期我选的几门课到现在还不是很熟悉,本想也在趁着这段时间好好看看。偏生五天前我在浏览数学研发论坛的编程擂台时看到了这样的一道题目

设对于给定的$L$,方程
$$\frac{1}{x}+\frac{1}{y}=\frac{1}{n}$$
满足$0 < x < y \leq L$的正整数解共有$f(L)$种情况。比如$f(6)=1,f(12)=3,f(1000)=1069$,求$f(10^{12})$。

这道题目的来源是Project Euler的第454题:Diophantine reciprocals III(丢潘图倒数方程),题目简短易懂,但又不失深度,正符合我对理想题目的定义。而且最近在学习Python学习得不亦乐乎,看到这道题目就跃跃欲试。于是乎,我的五天时间就没有了,而且过程中几乎耗尽了我现在懂的所有编程技巧。由于不断地测试运行,我的电脑发热量比平时大了几倍,真是辛苦了我的电脑。最后的代码,自我感觉已经是我目前写的最精彩的代码了。在此与大家共享和共勉~

上述表达式是分式,不利于编程,由于$n=\frac{xy}{x+y}$,于是上述题目也等价于求$(x+y)|xy$(意思是$x+y$整除$xy$)的整数解。

点击阅读全文...

30 Jan

三个相切圆的公切圆:补充

文章《三个相切圆的公切圆》中,笔者讲到利用反演作三个相切圆的公切圆,那时要求三个圆要两两相切。后来思考了一下,发现不用这个条件,只要三个之中的一个圆与另外两个圆都相切即可。

点击阅读全文...

18 Jun

线性微分方程组:已知特解求通解

含有$n$个一阶常微分方程的一阶常微分方程组
$$\dot{\boldsymbol{x}}=\boldsymbol{A}\boldsymbol{x}$$
其中$\boldsymbol{x}=(x_1(t),\dots,x_n(t))^{T}$为待求函数,而$\boldsymbol{A}=(a_{ij}(t))_{n\times n}$为已知的函数矩阵。现在已知该方程组的$n-1$个线性无关的特解$\boldsymbol{x}_1,\boldsymbol{x}_2,\dots,\boldsymbol{x}_{n-1}$(解的列向量),求方程的通解。

这是我的一位同学在6月5号问我的一道题目,我当时看了一下,感觉可以通过李对称的方法很容易把解构造出来,当晚就简单分析了一下,发现根据李对称的思想,由上面已知的信息确实足以把通解构造出来。但是我尝试了好几天,尝试了几何、代数等思想,都没有很好地构造出相应的正则变量出来,从而也没有写出它的显式解,于是就搁置下来了。今天再分析这道题目时,竟在无意之间构造出了让我比较满意的解来~

点击阅读全文...

22 Feb

炼钢.vs.做菜:淬火与过冷河

牛腩过冷河

牛腩过冷河

除了数学物理和中国象棋,我闲时也喜欢弄一下吃的。看到各种菜料经过自己的加工变成佳肴,也是一件美不胜收的事情;有时看到同样的菜料能够做出不同款式、不同味道的菜时,更是其乐无穷。作为广东人,我很自豪于其中一句话:“广东人吃所有东西——天上飞的,除了飞机;地上爬的,除了火车;水中游的,除了潜艇”。虽然不免有些夸张,但这句话充分显示了广东人(或者说岭南地区)饮食和烹饪的强大本领。我的厨房技术来源于我妈妈,小时候妈妈在家里做菜,由于是烧柴草生火,所以我得在灶前看好火。于是看火之时也在看妈妈做菜,久而久之,也会学会了一些做菜的方法。而现在,妈妈仍是家里的厨房好手,而我也不时进入厨房,做做自己喜欢吃的东西。谢谢我的好妈妈!

炼钢

本文叫“炼钢.vs.做菜”,这两者基本上是风牛马不相及,不过我却发现它们有一点点相似的技巧。已不记得什么时候了,在一本自然科学的书上,我曾看到过炼钢的两种技术:淬火和退火(后来发现还有正火、回火等,原理类似)。简单来说,淬火是将一块钢铁烧红,然后放进冷水中迅速冷却(也就是加热到一定温度,然后迅速冷却),如此重复,便可使得钢铁变硬,但同时也会更脆;退火则刚刚相反,它是将钢铁烧红后,让它自然冷却(有必要时,想办法降低冷却速度),如此一来,钢铁变软了,也变韧了。正火、回火均与退火类似,只是在细节上不同。通过淬火和退火的适当组合,可以生产出硬度和韧度都适当的钢铁。

点击阅读全文...

18 Mar

倒立单摆之分离频率

Mathieu方程

在文章《有质动力:倒立单摆的稳定性》中,我们分析了通过高频低幅振荡来使得倒立单摆稳定的可能性,并且得出了运动方程
$$l\ddot{\theta}+[h_0 \omega^2 \cos(\omega t)-g]\sin\theta=0$$

由此对单摆频率的下限提出了要求$\omega \gg \sqrt{\frac{g}{h_0}}$。然而,那个下限只不过是必要的,却不是充分的。如果要完整地分析该单摆的运动方程,最理想的方法当然是写出上述常微分方程的解析解。不过很遗憾,我们并没有办法做到这一点。我们只能够采取各种近似方法来求解。近似方法一般指数值计算方法,然后笔者偏爱的是解析方法,也就是说,即使是近似解,也希望能够求出近似的解析解。

点击阅读全文...