10 Oct

用狄拉克函数来构造非光滑函数的光滑近似

在机器学习中,我们经常会碰到不光滑的函数,但我们的优化方法通常是基于梯度的,这意味着光滑的模型可能更利于优化(梯度是连续的),所以就有了寻找非光滑函数的光滑近似的需求。事实上,本博客已经多次讨论过相关主题,比如《寻求一个光滑的最大值函数》《函数光滑化杂谈:不可导函数的可导逼近》等,但以往的讨论在方法上并没有什么通用性。

不过,笔者从最近的一篇论文《SAU: Smooth activation function using convolution with approximate identities》学习到了一种比较通用的思路:用狄拉克函数来构造光滑近似。通用到什么程度呢?理论上有可数个间断点的函数都可以用它来构造光滑近似!个人感觉还是非常有意思的。

点击阅读全文...

24 May

也来盘点一些最近的非Transformer工作

大家最近应该多多少少都被各种MLP相关的工作“席卷眼球”了。以Google为主的多个研究机构“奇招频出”,试图从多个维度“打击”Transformer模型,其中势头最猛的就是号称是纯MLP的一系列模型了,让人似乎有种“MLP is all you need”时代到来的感觉。

这一顿顿让人眼花缭乱的操作背后,究竟是大道至简下的“返璞归真”,还是江郎才尽后的“冷饭重炒”?让我们也来跟着这股热潮,一起盘点一些最近的相关工作。

五月人倍忙

怪事天天有,五月特别多。这个月以来,各大机构似乎相约好了一样,各种非Transformer的工作纷纷亮相,仿佛“忽如一夜春风来,千树万树梨花开”。单就笔者在Arxiv上刷到的相关论文,就已经多达七篇(一个月还没过完,七篇方向极其一致的论文),涵盖了NLP和CV等多个任务,真的让人应接不暇:

点击阅读全文...

11 Jun

SimBERTv2来了!融合检索和生成的RoFormer-Sim模型

去年我们放出了SimBERT模型,它算是我们开源的比较成功的模型之一,获得了不少读者的认可。简单来说,SimBERT是一个融生成和检索于一体的模型,可以用来作为句向量的一个比较高的baseline,也可以用来实现相似问句的自动生成,可以作为辅助数据扩增工具使用,这一功能是开创性的。

近段时间,我们以RoFormer为基础模型,对SimBERT相关技术进一步整合和优化,最终发布了升级版的RoFormer-Sim模型。

简介

RoFormer-Sim是SimBERT的升级版,我们也可以通俗地称之为“SimBERTv2”,而SimBERT则默认是指旧版。从外部看,除了基础架构换成了RoFormer外,RoFormer-Sim跟SimBERT没什么明显差别,事实上它们主要的区别在于训练的细节上,我们可以用两个公式进行对比:
\begin{array}{c}
\text{SimBERT} = \text{BERT} + \text{UniLM} + \text{对比学习} \\[5pt]
\text{RoFormer-Sim} = \text{RoFormer} + \text{UniLM} + \text{对比学习} + \text{BART} + \text{蒸馏}\\
\end{array}

点击阅读全文...

19 Jul

用开源的人工标注数据来增强RoFormer-Sim

大家知道,从SimBERTSimBERTv2(RoFormer-Sim),我们算是为中文文本相似度任务建立了一个还算不错的基准模型。然而,SimBERT和RoFormer-Sim本质上都只是“弱监督”模型,跟“无监督”类似,我们不能指望纯弱监督的模型能达到完美符合人的认知效果。所以,为了进一步提升RoFormer-Sim的效果,我们尝试了使用开源的一些标注数据来辅助训练。本文就来介绍我们的探索过程。

有的读者可能想:有监督有啥好讲的?不就是直接训练么?说是这么说,但其实并没有那么“显然易得”,还是有些“雷区”的,所以本文也算是一份简单的“扫雷指南”吧。

前情回顾

笔者发现,自从SimBERT发布后,读者问得最多的问题大概是:

为什么“我喜欢北京”跟“我不喜欢北京”相似度这么高?它们不是意思相反吗?

点击阅读全文...

1 Sep

从三角不等式到Margin Softmax

《基于GRU和AM-Softmax的句子相似度模型》中我们介绍了AM-Softmax,它是一种带margin的softmax,通常用于用分类做检索的场景。当时通过图示的方式简单说了一下引入margin是因为“分类与排序的不等价性”,但没有比较定量地解释这种不等价性的来源。

在这篇文章里,我们来重提这个话题,从距离的三角不等式的角度来推导和理解margin的必要性。

三角不等式

平时,我们说的距离一般指比较直观的“欧氏距离”,但在数学上距离,距离又叫“度量”,它有公理化的定义,是指定义在某个集合上的二元函数$d(x,y)$,满足:

点击阅读全文...

24 Aug

我们知道,梯度累积是在有限显存下实现大batch_size训练的常用技巧。在之前的文章《用时间换取效果:Keras梯度累积优化器》中,我们就简单介绍过梯度累积的实现,大致的思路是新增一组参数来缓存梯度,最后用缓存的梯度来更新模型。美中不足的是,新增一组参数会带来额外的显存占用。

这几天笔者在思考优化器的时候,突然意识到:梯度累积其实可以内置在带动量的优化器中!带着这个思路,笔者对优化了进行了一些推导和实验,最后还得到一个有意思但又有点反直觉的结论:少更新几步参数,模型最终效果可能会变好!

注:本文下面的结果,几乎原封不动且没有引用地出现在Google的论文《Combined Scaling for Zero-shot Transfer Learning》中,在此不做过多评价,请读者自行品评。

SGDM

在正式讨论之前,我们定义函数
\begin{equation}\chi_{t/k} = \left\{ \begin{aligned}&1,\quad t \equiv 0\,(\text{mod}\, k) \\
&0,\quad t \not\equiv 0\,(\text{mod}\, k)
\end{aligned}\right.\end{equation}
也就是说,$t$是一个整数,当它是$k$的倍数时,$\chi_{t/k}=1$,否则$\chi_{t/k}=0$,这其实就是一个$t$能否被$k$整除的示性函数。在后面的讨论中,我们将反复用到这个函数。

点击阅读全文...

17 Aug

浅谈Transformer的初始化、参数化与标准化

前几天在训练一个新的Transformer模型的时候,发现怎么训都不收敛了。经过一番debug,发现是在做Self Attention的时候$\boldsymbol{Q}\boldsymbol{K}^{\top}$之后忘记除以$\sqrt{d}$了,于是重新温习了一下为什么除以$\sqrt{d}$如此重要的原因。当然,Google的T5确实是没有除以$\sqrt{d}$的,但它依然能够正常收敛,那是因为它在初始化策略上做了些调整,所以这个事情还跟初始化有关。

藉着这个机会,本文跟大家一起梳理一下模型的初始化、参数化和标准化等内容,相关讨论将主要以Transformer为心中展开。

采样分布

初始化自然是随机采样的的,所以这里先介绍一下常用的采样分布。一般情况下,我们都是从指定均值和方差的随机分布中进行采样来初始化。其中常用的随机分布有三个:正态分布(Normal)、均匀分布(Uniform)和截尾正态分布(Truncated Normal)。

点击阅读全文...

17 Sep

让人惊叹的Johnson-Lindenstrauss引理:理论篇

今天我们来学习Johnson-Lindenstrauss引理,由于名字比较长,下面都简称“JL引理”。

个人认为,JL引理是每一个计算机科学的同学都必须了解的神奇结论之一,它是一个关于降维的著名的结果,它也是高维空间中众多反直觉的“维度灾难”现象的经典例子之一。可以说,JL引理是机器学习中各种降维、Hash等技术的理论基础,此外,在现代机器学习中,JL引理也为我们理解、调试模型维度等相关参数提供了重要的理论支撑。

对数的维度

JL引理,可以非常通俗地表达为:

通俗版JL引理: 塞下$N$个向量,只需要$\mathcal{O}(\log N)$维空间。

点击阅读全文...