微积分学习(二):导数
By 苏剑林 | 2009-09-12 | 20949位读者 | 引用自从上次写了关于微积分中的极限学习后,就很长的时间没有与大家探讨微积分的学习了(估计有20多天了吧)。启事,我自己也是从今年的9月下旬才开始系统地学习微积分的,到现在也就一个月的时间吧。学习的内容有:集合、函数、极限、导数、微分、积分。不过都是一元微积分,多元的微积分正在紧张地进修中......
现在不妨和大家探讨一下关于微积分中的最基本内容——“导数”的学习。
其实,用最简单的说法,如果存在函数$f(x)$,那么它的导数(一阶导数)为
$$\lim_{\Delta x->0} f'(x)=\frac{f(x+\Delta x)-f(x)}{\Delta x}$$
《方程与宇宙》:活力积分和开普勒方程(二)
By 苏剑林 | 2010-03-27 | 59555位读者 | 引用在上一回的讨论中,我们已经解决了大部分的问题,并且表达了找到r或者$\theta$关于时间t的函数的希望。在最后的内容中,我们做了以下工作:
由(7)得到$\dot{\theta}=h/r^2$,代入(6)得到:
$$\ddot{r} -h^2/r^3=-\frac{\mu}{r^2}\tag{10}$$这是一个二阶微分方程,它的解很容易找出,但是这个积分太复杂:
$$\dot{r}\frac{d\dot{r}}{dr}=h^2/r^3-\frac{\mu}{r^2}$$
$\dot{r}d\dot{r}=(h^2/r^3-\frac{\mu}{r^2})dr$,两端积分
$$\dot{r}^2={2\mu}/r-h^2/r^2+K_1\tag{11}$$$$\Rightarrow {dt}/{dr}=\frac{r}{\sqrt{K_1 r^2+2\mu r-h^2}}$$
$t=\int \frac{r}{\sqrt{K_1 r^2+2\mu r-h^2}}dr$
《方程与宇宙》:三体问题和它的初积分(六)
By 苏剑林 | 2011-01-20 | 64404位读者 | 引用The Three Body Problem and its Classical Integration
很多天文爱好者都已经接触到了“二体问题”(我们在高中学习到的“开普勒三定律”就是内容之一),由于在太阳系中行星质量相对较小而且距离相对较远,应用“二体问题”的解对天体进行计算、预报等能够满足一定的近似需求。不过,如果需要更高精度的计算,就不能把其他行星的引力给忽略掉了,于是就产生了所谓N体问题(N-Body Problem),即N个质点尽在它们各自引力的相互作用下的运动规律问题。最简单的二体已经被彻底解决,而三体或更多体的问题则与二体大相径庭,因为庞加莱证明了,三体问题不能严格求解,而且这是一个混沌系统,任何微小的扰动都会造成不可预期的效果。
根据牛顿力学,选择惯性参考系,设三个质点分别为$M_1,M_2,M_3$,向径分别为$\vec{r_1},\vec{r_2},\vec{r_3}$,可以列出运动方程(以下的导数都默认是对时间t求导)
费曼积分法——积分符号内取微分(1)
By 苏剑林 | 2012-06-10 | 81364位读者 | 引用费曼积分法——积分符号内取微分(3)
By 苏剑林 | 2012-06-23 | 53207位读者 | 引用由于自行车之旅的原因,这篇文章被搁置了一个星期,其实应该在一个星期前就把它写好的。这篇文章继续讲讲费曼积分法的一些例子。读者或许可以从这些不同类型的例子中,发现它应用的基本方向和方法,从而提升对它的认识。
例子2:
$$\int_0^{\infty} \frac{\sin x}{x}dx$$
这也是一种比较常见的类型,它的形式为$\int \frac{f(x)}{x}dx$,对于这种形式,我们的第一感觉就是将其改写成参数形式$\int \frac{f(ax)}{x}dx$,这样的目的很简单,就是把分母给消去了,与$\int \frac{x}{f(x)}dx$的求积思想是一致的。但是深入一点研究就会发现,纵使这样能够消去分母,使得第一次积分变得简单,但是到了第二次积分的时候,我们发现,它又会变回$\int \frac{f(x)}{x}dx$的积分,使我们不能继续进行下去,因此这个取参数的方法大多数情况下都是不行的。
算子与线性常微分方程(上)
By 苏剑林 | 2012-11-30 | 43381位读者 | 引用简介
最近在学习量子力学的时候,无意中涉及到了许多矩阵(线性代数)、群论等知识,并且发现其中有不少相同的思想,其中主要是用算子来表示其对函数的作用和反作用。比如我们可以记$D=\frac{d}{dx}$,那么函数$f(x)$的导数就可以看作是算子D对它的一次作用后的结果,二阶导数则是作用了两次,等等。而反过来,$D^{-1}$就表示这个算子的反作用,它把作用后的函数(像)还原为原来的函数(原像),当然,这不是将求导算子做简单的除法,而是积分运算。用这种思想来解答线性微分方程,有着统一和简洁的美。
线性微分方程是求解一切微分方程的基础,一般来说它形式比较简单,多数情况下我们都可以求出它的通解。在非相对论性量子力学的薛定谔方程中,本质上就是在求解一道二阶偏线性微分方程。另一方面,在许多我们无法求解的非线性系统中,线性解作为一级近似,对于定性分析是极其重要的。
一阶线性常微分方程
这是以下所有微分方程求积的一个基础形式,即$\frac{dy}{dx}+g(x)y=f(x)$的求解。这是通过常数变易法来解答的,其思想跟天体力学中的“摄动法”是一致的,首先在无法求解原微分方程的时候,先忽略掉其中的一些小项,求得一个近似解。即我们先求解
$$\frac{dy}{dx}+g(x)y=0$$
算子与线性常微分方程(下)
By 苏剑林 | 2012-11-30 | 22018位读者 | 引用不可交换
很自然会想到把这种方法延伸到变系数微分方程的求解,也许有读者回去自己摆弄了一下却总得不到合适的解而感到困惑。在这里群的非Abel性就体现出来了,首先用一个例子来说明一下,我们考虑算子的复合
$$(D-x)(D+x)=D^2-x^2+(Dx-xD)$$
我们要谨慎使用交换律,我们记$[P,Q]=PQ-QP$
其中P和Q是两个算子,此即量子力学中的“对易式”,用来衡量算子P和算子Q的可交换程度,当然,它本身也是一个算子。我们先来求出$[D,x]$给出了什么(要是它是0的话,那就表明运算可以交换了)。究竟它等于什么呢?直接看是看不出的,我们把它作用于一个函数:
$$[D,x]y=(Dx-xD)y=D(xy)-xDy=yDx+xDy-xDy=y$$
由于“近水楼台先得月”,所以$Dxy$表示x先作用于y,然后D再作用于(xy);而$xDy$表示D先作用于y,然后x再作用于Dy。最终我们得到了
我从来不想在教科书上的定义上纠结太多,因为我知道,真正对定义的理解,需要在长期的实践应用中慢慢感悟的,所以我们唯一需要做的是继续我们的研究。
但是前些天有些朋友问到我关于微分的理解,比如“dx是不是一定很小”等等,所以决定在此写写我的理解。
与微分联系很紧密的,也是我们很熟悉的东西,当然是“增量 ”啦,比如$\Delta y$、$\Delta x$等等,增量显然是可以任意大的(只要自变量还在定义域内)。那么考虑一个函数$y=f(x)$,函数的微分是怎么出现的呢?那是因为我们直接研究函数的增量是比较麻烦的,所以就引入了微分dy,当$\Delta x$很小时,它代表增量的主项:$\Delta y=dy+o(\Delta x)=A \Delta x+o(\Delta x)$,A是一个常数。
最近评论