从“0.999...等于1”说开来
By 苏剑林 | 2015-07-21 | 58064位读者 | 引用从小学到大学都可能被问到的但却又不容易很好地回答的问题中,“0.999...究竟等不等于1”肯定也算是相当经典的一个。然而,要清楚地回答这个问题并不容易,很多时候被提问者都会不自觉地弄晕,甚至有些“民科”还以这个问题“创造了新数学”。
本文试图就这个问题,给出比较通俗但比较严谨的回答。
什么是相等?
要回答0.999...等不等于1,首先得定义“相等”!什么才算相等?难道真的要写出来一模一样才叫相等吗?如果是这样的话,那么2-1都不等于1了,因为2-1跟1看起来都不一样啊。
显然我们需要给“相等”做出比较严格但是又让人公认的定义,才能对相等进行判断,显然,下面的定义是能够让很多人接受的:
$a = b$等切仅当$|a-b|=0$。
从loss的硬截断、软化到focal loss
By 苏剑林 | 2017-12-25 | 191479位读者 | 引用前言
今天在QQ群里的讨论中看到了focal loss,经搜索它是Kaiming大神团队在他们的论文《Focal Loss for Dense Object Detection》提出来的损失函数,利用它改善了图像物体检测的效果。不过我很少做图像任务,不怎么关心图像方面的应用。本质上讲,focal loss就是一个解决分类问题中类别不平衡、分类难度差异的一个loss,总之这个工作一片好评就是了。大家还可以看知乎的讨论:
《如何评价kaiming的Focal Loss for Dense Object Detection?》
看到这个loss,开始感觉很神奇,感觉大有用途。因为在NLP中,也存在大量的类别不平衡的任务。最经典的就是序列标注任务中类别是严重不平衡的,比如在命名实体识别中,显然一句话里边实体是比非实体要少得多,这就是一个类别严重不平衡的情况。我尝试把它用在我的基于序列标注的问答模型中,也有微小提升。嗯,这的确是一个好loss。
接着我再仔细对比了一下,我发现这个loss跟我昨晚构思的一个loss具有异曲同工之理!这就促使我写这篇博文了。我将从我自己的思考角度出发,来分析这个问题,最后得到focal loss,也给出我昨晚得到的类似的loss。
从Boosting学习到神经网络:看山是山?
By 苏剑林 | 2016-07-01 | 63467位读者 | 引用前段时间在潮州给韩师的同学讲文本挖掘之余,涉猎到了Boosting学习算法,并且做了一番头脑风暴,最后把Boosting学习算法的一些本质特征思考清楚了,而且得到一些意外的结果,比如说AdaBoost算法的一些理论证明也可以用来解释神经网络模型这么强大。
AdaBoost算法
Boosting学习,属于组合模型的范畴,当然,与其说它是一个算法,倒不如说是一种解决问题的思路。以有监督的分类问题为例,它说的是可以把弱的分类器(只要准确率严格大于随机分类器)通过某种方式组合起来,就可以得到一个很优秀的分类器(理论上准确率可以100%)。AdaBoost算法是Boosting算法的一个例子,由Schapire在1996年提出,它构造了一种Boosting学习的明确的方案,并且从理论上给出了关于错误率的证明。
以二分类问题为例子,假设我们有一批样本$\{x_i,y_i\},i=1,2,\dots,n$,其中$x_i$是样本数据,有可能是多维度的输入,$y_i\in\{1,-1\}$为样本标签,这里用1和-1来描述样本标签而不是之前惯用的1和0,只是为了后面证明上的方便,没有什么特殊的含义。接着假设我们已经有了一个弱分类器$G(x)$,比如逻辑回归、SVM、决策树等,对分类器的唯一要求是它的准确率要严格大于随机(在二分类问题中就是要严格大于0.5),所谓严格大于,就是存在一个大于0的常数$\epsilon$,每次的准确率都不低于$\frac{1}{2}+\epsilon$。
变分自编码器(二):从贝叶斯观点出发
By 苏剑林 | 2018-03-28 | 456566位读者 | 引用源起
前几天写了博文《变分自编码器(一):原来是这么一回事》,从一种比较通俗的观点来理解变分自编码器(VAE),在那篇文章的视角中,VAE跟普通的自编码器差别不大,无非是多加了噪声并对噪声做了约束。然而,当初我想要弄懂VAE的初衷,是想看看究竟贝叶斯学派的概率图模型究竟是如何与深度学习结合来发挥作用的,如果仅仅是得到一个通俗的理解,那显然是不够的。
所以我对VAE继续思考了几天,试图用更一般的、概率化的语言来把VAE说清楚。事实上,这种思考也能回答通俗理解中无法解答的问题,比如重构损失用MSE好还是交叉熵好、重构损失和KL损失应该怎么平衡,等等。
建议在阅读《变分自编码器(一):原来是这么一回事》后对本文进行阅读,本文在内容上尽量不与前文重复。
准备
在进入对VAE的描述之前,我觉得有必要把一些概念性的内容讲一下。
从动力学角度看优化算法(一):从SGD到动量加速
By 苏剑林 | 2018-06-27 | 156685位读者 | 引用在这个系列中,我们来关心优化算法,而本文的主题则是SGD(stochastic gradient descent,随机梯度下降),包括带Momentum和Nesterov版本的。对于SGD,我们通常会关心的几个问题是:
SGD为什么有效?
SGD的batch size是不是越大越好?
SGD的学习率怎么调?
Momentum是怎么加速的?
Nesterov为什么又比Momentum稍好?
...
这里试图从动力学角度分析SGD,给出上述问题的一些启发性理解。
梯度下降
既然要比较谁好谁差,就需要知道最好是什么样的,也就是说我们的终极目标是什么?
训练目标分析
假设全部训练样本的集合为$\boldsymbol{S}$,损失度量为$L(\boldsymbol{x};\boldsymbol{\theta})$,其中$\boldsymbol{x}$代表单个样本,而$\boldsymbol{\theta}$则是优化参数,那么我们可以构建损失函数
$$L(\boldsymbol{\theta}) = \frac{1}{|\boldsymbol{S}|}\sum_{\boldsymbol{x}\in\boldsymbol{S}} L(\boldsymbol{x};\boldsymbol{\theta})\tag{1}$$
而训练的终极目标,则是找到$L(\boldsymbol{\theta})$的一个全局最优点(这里的最优是“最小”的意思)。
从SamplePairing到mixup:神奇的正则项
By 苏剑林 | 2018-07-07 | 77831位读者 | 引用SamplePairing和mixup是两种一脉相承的图像数据扩增手段,它们看起来很不合理,而操作则非常简单,但结果却非常漂亮:在多个图像分类任务中都表明它们能提高最终分类模型的精度。
某些读者会困惑于一个问题:为什么如此不合理的数据扩增手段,能得到如此好的效果?而本文则要表明,它们看起来是一种数据扩增方法,事实上它们是对模型的一种正则化方案。正如周星驰的电影《国产凌凌漆》的一句经典台词:
表面上看这是一个吹风机,其实它是一个刮胡刀。
数据扩增
让我们从数据扩增说起。数据扩增是指我们在对原始数据做一些简单的变换后,它们对应的类别往往不会变化,所以我们可以在原来数据的基础上,“造”出更多的数据来。比如一幅小狗的照片,将它水平翻转、轻微的旋转、裁剪、平移等操作后,我们认为它的类别没有变化,它还是原来的那只狗。这样一来,从一个样本我们可以衍生出好几个样本,从而增加了训练样本量。
最小熵原理(四):“物以类聚”之从图书馆到词向量
By 苏剑林 | 2018-12-02 | 92110位读者 | 引用从第一篇看下来到这里,我们知道所谓“最小熵原理”就是致力于降低学习成本,试图用最小的成本完成同样的事情。所以整个系列就是一个“偷懒攻略”。那偷懒的秘诀是什么呢?答案是“套路”,所以本系列又称为“套路宝典”。
本篇我们介绍图书馆里边的套路。
先抛出一个问题:词向量出现在什么时候?是2013年Mikolov的Word2Vec?还是是2003年Bengio大神的神经语言模型?都不是,其实词向量可以追溯到千年以前,在那古老的图书馆中...
走进图书馆
图书馆里有词向量?还是千年以前?在哪本书?我去借来看看。
放书的套路
其实不是哪本书,而是放书的套路。
很明显,图书馆中书的摆放是有“套路”的:它们不是随机摆放的,而是分门别类地放置的,比如数学类放一个区,文学类放一个区,计算机类也放一个区;同一个类也有很多子类,比如数学类中,数学分析放一个子区,代数放一个子区,几何放一个子区,等等。读者是否思考过,为什么要这么分类放置?分类放置有什么好处?跟最小熵又有什么关系?
最近评论