RealFormer:把残差转移到Attention矩阵上面去
By 苏剑林 | 2020-12-24 | 91150位读者 | 引用大家知道Layer Normalization是Transformer模型的重要组成之一,它的用法有PostLN和PreLN两种,论文《On Layer Normalization in the Transformer Architecture》中有对两者比较详细的分析。简单来说,就是PreLN对梯度下降更加友好,收敛更快,对训练时的超参数如学习率等更加鲁棒等,反正一切都好但就有一点硬伤:PreLN的性能似乎总略差于PostLN。最近Google的一篇论文《RealFormer: Transformer Likes Residual Attention》提出了RealFormer设计,成功地弥补了这个Gap,使得模型拥有PreLN一样的优化友好性,并且效果比PostLN还好,可谓“鱼与熊掌兼得”了。
你可能不需要BERT-flow:一个线性变换媲美BERT-flow
By 苏剑林 | 2021-01-11 | 200378位读者 | 引用BERT-flow来自论文《On the Sentence Embeddings from Pre-trained Language Models》,中了EMNLP 2020,主要是用flow模型校正了BERT出来的句向量的分布,从而使得计算出来的cos相似度更为合理一些。由于笔者定时刷Arixv的习惯,早在它放到Arxiv时笔者就看到了它,但并没有什么兴趣,想不到前段时间小火了一把,短时间内公众号、知乎等地出现了不少的解读,相信读者们多多少少都被它刷屏了一下。
从实验结果来看,BERT-flow确实是达到了一个新SOTA,但对于这一结果,笔者的第一感觉是:不大对劲!当然,不是说结果有问题,而是根据笔者的理解,flow模型不大可能发挥关键作用。带着这个直觉,笔者做了一些分析,果不其然,笔者发现尽管BERT-flow的思路没有问题,但只要一个线性变换就可以达到相近的效果,flow模型并不是十分关键。
余弦相似度的假设
一般来说,我们语义相似度比较或检索,都是给每个句子算出一个句向量来,然后算它们的夹角余弦来比较或者排序。那么,我们有没有思考过这样的一个问题:余弦相似度对所输入的向量提出了什么假设呢?或者说,满足什么条件的向量用余弦相似度做比较效果会更好呢?
Nyströmformer:基于矩阵分解的线性化Attention方案
By 苏剑林 | 2021-02-16 | 43855位读者 | 引用标准Attention的$\mathcal{O}(n^2)$复杂度可真是让研究人员头大。前段时间我们在博文《Performer:用随机投影将Attention的复杂度线性化》中介绍了Google的Performer模型,它通过随机投影的方式将标准Attention转化为线性Attention。无独有偶,前些天Arxiv上放出了AAAI 2021的一篇论文《Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention》,里边又提出了一种从另一个角度把标准Attention线性化的方案。
该方案写的是Nyström-Based,顾名思义是利用了Nyström方法来近似标准Attention的。但是坦白说,在看到这篇论文之前,笔者也完全没听说过Nyström方法,而纵观整篇论文,里边也全是笔者一眼看上去感觉很茫然的矩阵分解推导,理解起来颇为困难。不过有趣的是,尽管作者的推导很复杂,但笔者发现最终的结果可以通过一个相对来说更简明的方式来理解,遂将笔者对Nyströmformer的理解整理在此,供大家参考。
又是Dropout两次!这次它做到了有监督任务的SOTA
By 苏剑林 | 2021-07-01 | 206026位读者 | 引用关注NLP新进展的读者,想必对四月份发布的SimCSE印象颇深,它通过简单的“Dropout两次”来构造正样本进行对比学习,达到了无监督语义相似度任务的全面SOTA。无独有偶,最近的论文《R-Drop: Regularized Dropout for Neural Networks》提出了R-Drop,它将“Dropout两次”的思想用到了有监督任务中,每个实验结果几乎都取得了明显的提升。此外,笔者在自己的实验还发现,它在半监督任务上也能有不俗的表现。
小小的“Dropout两次”,居然跑出了“五项全能”的感觉,不得不令人惊讶。本文来介绍一下R-Drop,并分享一下笔者对它背后原理的思考。
【搜出来的文本】⋅(四)通过增、删、改来用词造句
By 苏剑林 | 2021-02-25 | 46307位读者 | 引用“用词造句”是小学阶段帮助我们理解和运用词语的一个经典任务,从自然语言处理的角度来看,它是一个句子扩写或者句子补全任务,它其实要求我们具有不定向地进行文本生成的能力。然而,当前主流的语言模型都是单方向生成的(多数是正向的,即从左往右,少数是反向的,即从右往左),但用词造句任务中所给的若干个词未必一定出现在句首或者句末,这导致无法直接用语言模型来完成造句任务。
本文我们将介绍论文《CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling》,它使用MCMC采样使得单向语言模型也可以做到不定向生成,通过增、删、改操作模拟了人的写作润色过程,从而能无监督地完成用词造句等多种文本生成任务。
问题设置
无监督地进行文本采样,那么直接可以由语言模型来完成,而我们同样要做的,是往这个采样过程中加入一些信号$\boldsymbol{c}$,使得它能生成我们期望的一些文本。在本系列第一篇文章《【搜出来的文本】⋅(一)从文本生成到搜索采样》的“明确目标”一节中,我们就介绍了本系列的指导思想:把我们要寻找的目标量化地写下来,然后最大化它或者从中采样。
T5 PEGASUS:开源一个中文生成式预训练模型
By 苏剑林 | 2021-03-03 | 182268位读者 | 引用去年在文章《那个屠榜的T5模型,现在可以在中文上玩玩了》中我们介绍了Google的多国语言版T5模型(mT5),并给出了用mT5进行中文文本生成任务的例子。诚然,mT5做中文生成任务也是一个可用的方案,但缺乏完全由中文语料训练出来模型总感觉有点别扭,于是决心要搞一个出来。
经过反复斟酌测试,我们决定以mT5为基础架构和初始权重,先结合中文的特点完善Tokenizer,然后模仿PEGASUS来构建预训练任务,从而训练一版新的T5模型,这就是本文所开源的T5 PEGASUS。
让人惊叹的Johnson-Lindenstrauss引理:应用篇
By 苏剑林 | 2021-09-24 | 35338位读者 | 引用上一篇文章中,我们比较详细地介绍了Johnson-Lindenstrauss引理(JL引理)的理论推导,这一篇我们来关注它的应用。
作为一个内容上本身就跟降维相关的结论,JL引理最基本的自然就是作为一个降维方法来用。但除了这个直接应用外,很多看似不相关的算法,比如局部敏感哈希(LSH)、随机SVD等,本质上也依赖于JL引理。此外,对于机器学习模型来说,JL引理通常还能为我们的维度选择提供一些理论解释。
降维的工具
JL引理提供了一个非常简单直接的“随机投影”降维思路:
给定$N$个向量$v_1,v_2,\cdots,v_N\in\mathbb{R}^m$,如果想要将它降到$n$维,那么只需要从$\mathcal{N}(0,1/n)$中采样一个$n\times m$矩阵$A$,然后$Av_1,Av_2,\cdots,Av_N$就是降维后的结果。
Transformer升级之路:1、Sinusoidal位置编码追根溯源
By 苏剑林 | 2021-03-08 | 127545位读者 | 引用最近笔者做了一些理解和改进Transformer的尝试,得到了一些似乎还有价值的经验和结论,遂开一个专题总结一下,命名为“Transformer升级之路”,既代表理解上的深入,也代表结果上的改进。
作为该专题的第一篇文章,笔者将会介绍自己对Google在《Attention is All You Need》中提出来的Sinusoidal位置编码
\begin{equation}\left\{\begin{aligned}&\boldsymbol{p}_{k,2i}=\sin\Big(k/10000^{2i/d}\Big)\\
&\boldsymbol{p}_{k, 2i+1}=\cos\Big(k/10000^{2i/d}\Big)
\end{aligned}\right.\label{eq:sin}\end{equation}
的新理解,其中$\boldsymbol{p}_{k,2i},\boldsymbol{p}_{k,2i+1}$分别是位置$k$的编码向量的第$2i,2i+1$个分量,$d$是向量维度。
作为位置编码的一个显式解,Google在原论文中对它的描述却寥寥无几,只是简单提及了它可以表达相对位置信息,后来知乎等平台上也出现了一些解读,它的一些特点也逐步为大家所知,但总体而言比较零散。特别是对于“它是怎么想出来的”、“非得要这个形式不可吗”等原理性问题,还没有比较好的答案。
因此,本文主要围绕这些问题展开思考,可能在思考过程中读者会有跟笔者一样的感觉,即越思考越觉得这个设计之精妙漂亮,让人叹服~
最近评论