ODE的坐标变换
熟悉理论力学的读者应该能够领略到变分法在变换坐标系中的作用。比如,如果要将下面的平面二体问题方程
$$\left\{\begin{aligned}\frac{d^2 x}{dt^t}=\frac{-\mu x}{(x^2+y^2)^{3/2}}\\
\frac{d^2 y}{dt^t}=\frac{-\mu y}{(x^2+y^2)^{3/2}}\end{aligned}\right.\tag{1}$$
变换到极坐标系下,如果直接代入计算,将会是一道十分繁琐的计算题。但是,我们知道,上述方程只不过是作用量
$$S=\int \left[\frac{1}{2}\left(\dot{x}^2+\dot{y}^2\right)+\frac{\mu}{\sqrt{x^2+y^2}}\right]dt\tag{2}$$
变分之后的拉格朗日方程,那么我们就可以直接对作用量进行坐标变换。而由于作用量一般只涉及到了一阶导数,因此作用量的变换一般来说比较简单。比如,很容易写出,$(2)$在极坐标下的形式为
$$S=\int \left[\frac{1}{2}\left(\dot{r}^2+r^2\dot{\theta}^2\right)+\frac{\mu}{r}\right]dt\tag{3}$$
对$(3)$进行变分,得到的拉格朗日方程为
$$\left\{\begin{aligned}&\ddot{r}=r\dot{\theta}^2-\frac{\mu}{r^2}\\
&\frac{d}{dt}\left(r^2\dot{\theta}\right)=0\end{aligned}\right.\tag{4}$$
就这样完成了坐标系的变换。如果想直接代入$(1)$暴力计算,那么请参考《方程与宇宙》:二体问题的来来去去(一)
勒贝格(Lebesgue)控制收敛定理
By 苏剑林 | 2015-01-16 | 86845位读者 | 引用实变函数中有一个勒贝格控制收敛定理,一般认为它是判断积分和取极限可交换的很好用的方法。勒贝格控制收敛定理是说,如果定义在集合$E$上的函数列$\left\{f_n(x)\right\}$满足$|f_n(x)|\leq F(x)$,而$F(x)$在$E$上可积,那么积分和取极限就可以交换,即
$$\lim_{n\to\infty}\left(\int_E f_n (x)dx\right)=\int_E \left(\lim_{n\to\infty}f_n (x)\right)dx$$
本文不打算谈该定理的证明,只是谈谈该定理的应用相关的话题。首先,请有兴趣的读者,做做以下题目:
$$\lim_{n\to\infty}\left(\int_0^1 \frac{n^2 x}{1+n^4 x^4}dx\right)$$
有趣的求极限题:随心所欲的放缩
By 苏剑林 | 2015-03-28 | 46024位读者 | 引用昨天一好友问我以下题目,求证:
$$\lim_{n\to\infty} \frac{1^n + 2^n +\dots + n^n}{n^n}=\frac{e}{e-1}$$
将解答过程简单记录一下。
求解
首先可以注意到,当$n$充分大时,
$$\frac{1^n + 2^n +\dots + n^n}{n^n}=\left(\frac{1}{n}\right)^n+\left(\frac{2}{n}\right)^n+\dots+\left(\frac{n}{n}\right)^n$$
的主要项都集中在最后面那几项,因此,可以把它倒过来计算
$$\begin{aligned}\frac{1^n + 2^n +\dots + n^n}{n^n}=&\left(\frac{1}{n}\right)^n+\left(\frac{2}{n}\right)^n+\dots+\left(\frac{n}{n}\right)^n\\
=&\left(\frac{n}{n}\right)^n+\dots+\left(\frac{2}{n}\right)^n+\left(\frac{1}{n}\right)^n\end{aligned}$$
海伦公式的一个别致的物理推导
By 苏剑林 | 2015-03-27 | 53018位读者 | 引用海伦公式是已知三角形三边的长度$a,b,c$来求面积$S$的公式,是一个相当漂亮的公式,它不算复杂,同时它关于$a,b,c$是对称的,充分体现了三边的同等地位。可是,这样具有对称美的公式推导,往往要经过一个不对称的过程,比如维基百科上的证明,这未免有点美中不足。本文的目的,就是想为此补充一个对称的推导。本文题目为“物理推导”,关键在于“推导”而不是“证明”,同时这里的“物理”并非是通过物理类比而来,而是推导的思想和方法很具有“物理味道”。
$$\sqrt{p(p-a)(p-b)(p-c)}$$
在推导开始之前,笔者给出一个评论:海伦公式似乎是由三边长求三角形面积的所有可能的公式之中最简单的一个。
你所没有思考过的平行线问题
By 苏剑林 | 2015-03-17 | 36378位读者 | 引用本文的主题是平行线,了解数学的朋友可能会想我会写有关非欧几何的内容。但这次不是,本文的内容纯粹是我们从小就开始学习的欧氏几何,基于“欧几里得第五公设”(又称平行公设)。但即便是从小就学习的欧氏几何中的平行线,也许里边的很多问题我们都没有思考清楚。因为平行是几何中非常基本的情形,因此,在讨论这种基本命题的时候,相当容易会出现循环论证、甚至本末倒置的情况。
我们从初中开始就被灌输“同位角相等,两直线平行”、“内错角相等,两直线平行”之类的平行线判断法则,当然,还少不了的是“过直线外一点只能作一条直线与已知直线平行”。但是,这些内容之中,有多少是基本的公理,有多少是可以证明的,该如何证明,我想很多人都理解不清楚,我自己也没有一个很好的答案。那些在初中教授平行线的老师们,估计也没多少个能够把它说清楚的。后来我发现,我居然不会证明“同位角相等,两直线平行”,“欧几里得第五公设”好像并没有告诉我们这个判定法则呀。于是,我翻看了一下初中的数学教科书,发现原来当初“同位角相等,两直线平行”这一判定法则是不加证明地让我们接受的,无怪乎我怎么也想不到关于这一法则的简单的证明...
于是,我想写这篇文章,为大家理解平行线的整个逻辑提供一点参考。
采样定理:有限个点构建出整个函数
By 苏剑林 | 2015-04-16 | 31593位读者 | 引用假设我们在听一首歌,那么听完这首歌之后,我们实际上在做这样的一个过程:耳朵接受了一段时间内的声波刺激,从而引起了大脑活动的变化。而这首歌,也就是这段时间内的声波,可以用时间$t$的函数$f(t)$描述,这个函数的区间是有限的,比如$t\in[0,T]$。接着假设另外一个场景——我们要用电脑录下我们唱的歌。这又是怎样一个过程呢?要注意电脑的信号是离散化的,而声波是连续的,因此,电脑要把歌曲记录下来,只能对信号进行采样记录。原则上来说,采集的点越多,就能够越逼真地还原我们的歌声。可是有一个问题,采集多少点才足够呢?在信息论中,一个著名的“采样定理”(又称香农采样定理,奈奎斯特采样定理)告诉我们:只需要采集有限个样本点,就能够完整地还原我们的输入信号来!
采集有限个点就能够还原一个连续的函数?这是怎么做到的?下面我们来解释这个定理。
任意给定一个函数,一般来说我们都可以将它做傅里叶变换:
$$F(\omega)=\int_{-\infty}^{+\infty} f(t)e^{i\omega t}dt\tag{1}$$
虽然我们的积分限写了正负无穷,但是由于$f(t)$是有限区间内的函数,所以上述积分区间实际上是有限的。
记录一次爬取淘宝/天猫评论数据的过程
By 苏剑林 | 2015-05-06 | 174016位读者 | 引用笔者最近迷上了数据挖掘和机器学习,要做数据分析首先得有数据才行。对于我等平民来说,最廉价的获取数据的方法,应该是用爬虫在网络上爬取数据了。本文记录一下笔者爬取天猫某商品的全过程,淘宝上面的店铺也是类似的做法,不赘述。主要是分析页面以及用Python实现简单方便的抓取。
笔者使用的工具如下
Python 3——极其方便的编程语言。选择3.x的版本是因为3.x对中文处理更加友好。
Pandas——Python的一个附加库,用于数据整理。
IE 11——分析页面请求过程(其他类似的流量监控工具亦可)。
剩下的还有requests,re,这些都是Python自带的库。
实例页面(美的某热水器):http://detail.tmall.com/item.htm?id=41464129793
胡闹的胜利:将算子引入级数求和
By 苏剑林 | 2015-05-26 | 24342位读者 | 引用在文章《有趣的求极限题:随心所欲的放缩》中,读者“最近倒了”提出了一个新颖的解法,然而这位读者写得并非特别清晰,更重要的是里边的某些技巧似乎是笔者以前没有见过的,于是自行分析了一番,给出了以下解释。
胡闹的结果
假如我们要求级数和
$$\sum_{k=0}^n \binom{n}{k}\frac{A_k}{n^k}$$
这里$A_0=1$。一般而言,我们用下标来标注不同的数,如上式的$A_k,\,k=0,1,2,\dots$,可是有的人偏不喜欢,他们更喜欢用上标来表示数列中的各项,他们把上面的级数写成
$$\sum_{k=0}^n \binom{n}{k}\frac{A^k}{n^k}$$
可能读者就会反对了:这不是胡闹吗,这不是让它跟分母的n的k次幂混淆了吗?可是那人干脆更胡闹一些,把级数写成
$$\sum_{k=0}^n \binom{n}{k}\frac{A^k}{n^k}=\left(1+\frac{A}{n}\right)^n$$
看清楚了吧?他干脆把$A$当作一个数来处理了!太胡闹了,$A$是个什么东西?估计这样的孩子要被老师赶出课堂的了。
可是换个角度想想,似乎未尝不可。
最近评论