5 Aug

两道无穷级数:自然数及其平方的倒数和

证明下列级数发散或者收敛:
(1) $\sum_{x = 1}^\infty \frac{1}{x} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + ...$
(2) $\sum_{x = 1}^\infty \frac{1}{x^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + ...$

一眼看上去,由于$1/x,1/{x^2}$都会趋向零,所以它们应该是收敛的。真的是这样吗?

点击阅读全文...

16 Oct

以自然数幂为系数的幂级数

$\sum_{i=0}^{\infty} a_i x^i=a_0+a_1 x+a_2 x^2+a_3 x^3+...$
最近为了数学竞赛,我研究了有关数列和排列组合的相关问题。由于我讨厌为某个问题而设计专门的技巧,所以我偏爱通用的方法,哪怕过程相对麻烦。因此,我对数学归纳法(递推法)和生成函数法情有独钟。前者只需要列出问题的递归关系,而不用具体分析,最终把问题转移到解函数方程上来。后者则巧妙地把数列${a_n}$与幂级数$\sum_{i=0}^{\infty} a_i x^i$一一对应,巧妙地通过代数运算或微积分运算等得到结果。这里我们不用考虑该级数的敛散性,只需要知道它对应着哪一个“母函数”(母函数展开泰勒级数后得到了级数$\sum_{i=0}^{\infty} a_i x^i$)。显然,这两种方法的最终,都是把问题归结为代数问题。

点击阅读全文...

21 Feb

寒假结束,今天上学了

我要上学了

我要上学了

越来越佩服前人,说出了“光阴似箭,日月如梭”的真理。是呀,期末考试仿佛只是在昨天,今天已经又要上学了;俯仰之间,一个月的时间就过去了。

毫无疑问,又因为我的懒惰和不坚持,浪费了我很多的时间。回想一下寒假,我究竟收获了什么呢?主要是两个方面吧:学术和情感

学术上,主要是数学天文学里面的内容。数学我主要是深入了微积分方面的内容,把微积分的思想深刻了一点点,把微分方程(组)熟悉了一点点。我有一种很熟悉的感觉:现在自学高等数学,就好比我之前在小学时间学习中学数学。那时候超傻,书本上说了$\lim_{\Delta x->0} f'(x)=\frac{f(x+\Delta x)-f(x)}{\Delta x}$,我看不懂这个式子,整天郁闷$f(x)$是不是指$f\cdot (x)$。不过尽管那时候不懂这些,还是懂应用,我用导数最基本的定义去求极值,得出了一些有趣的发现,使我的兴趣倍增。现在学习微积分也是这样的感觉,我觉得我仅仅是很显浅地接触到,还有很多等待仔细琢磨....

点击阅读全文...

19 Aug

势能最小问题的探讨

本文我们来探讨下列积分的极值曲线:
$$S=\int f(x,y)\sqrt{dx^2+dy^2}=\int f(x,y)ds$$

这本质上也是一个短程线问题。但是它形式比较简答,物理含义也更加明显。比如,如果$f(x,y)$是势函数的话,那么这就是一个求势能最小的二维问题;如果$f(x,y)$是摩擦力函数,那么这就是寻找摩擦力最小的路径问题。不管是哪一种,该问题都有相当的实用价值。下面将其变分:

$$\begin{aligned} \delta S =&\int \delta[f(x,y)\sqrt{dx^2+dy^2}] \\ =&\int [ds\delta f(x,y)+f(x,y)\frac{\delta (dx^2+dy^2)}{2ds}]\\ =&\int ds(\frac{\partial f}{\partial x}\delta x+\frac{\partial}{\partial y}\delta y)+f \frac{dx d(\delta x)+dy d(\delta y)}{ds} \\=&\int ds(\frac{\partial f}{\partial x}\delta x+\frac{\partial}{\partial y}\delta y)+f \frac{dx}{ds} d(\delta x)+\frac{dy}{ds} d(\delta y) \end{aligned}$$

点击阅读全文...

27 Jul

今天升级了Blog(欢迎大家来“顶”!)

今天把Blog程序版本升级到了PJBlog3 v3.2.7.300,乃目前最新版本。欢迎大家来“顶”文章

点击阅读全文...

28 Aug

正十七边形的尺规作图

为何正17边形能够用尺规作出来?要如何作?先别急,请看下面的解释:

一个正质数多边形可以用标尺作图的充分和必要条件是,该多边形的边数必定是一个费马质数。换句话说,只有正三边形、正五边形、正十七边形、正257边形和正63357边形可以用尺规作出来,其它的正质数多边形就不可以了。(除非我们再发现另一个费马质数。)

正17边形的尺规作法是高斯在1796年得出的,他也因此决心要成为数学家。关于费马质数,是指形如$2^{2^n}+1$的质数,一开始费马认为对于所有的n,这种形式的数都是质数。可是这似乎是上天的玩笑,目前只发现了当n=0,1,2,3,4的时候$2^{2^n}+1$是质数,其余都是合数。

点击阅读全文...

1 Oct

【NASA每日一图】春分时刻的土星

图片说明:春分点的土星,版权:Cassini Imaging Team, ISS, JPL, ESA, NASA

图片说明:春分点的土星,版权:Cassini Imaging Team, ISS, JPL, ESA, NASA

点击阅读全文...

8 Oct

【NASA每日一图】撞击目标:凯布斯月球坑

NASA月球探测器撞击目标——凯布斯(Cabeus )月球坑

NASA月球探测器撞击目标——凯布斯(Cabeus )月球坑

(图片说明:凯布斯(Cabeus )月球坑,版权:NMSU/MSFC Tortugas Observatory)

点击阅读全文...