当概率遇上复变:解析概率
By 苏剑林 | 2014-04-25 | 28993位读者 | 引用每当看到数学的两个看似毫不相关的分支巧妙地联系了起来时,我总会为数学的神奇美丽惊叹不已。在很久以前,当我看到通过生成函数法把数论问题与复变函数方法结合起来,衍生出一门奇妙的“解析数论”时,我就惊叹过生成函数法的漂亮!可惜,一直都没有好好写整理这些内容。今天,当我在看李政道先生的《物理学中的数学方法》时,看到他把复变函数跟随机游动如鬼斧神工般了起来,再次让我拍案叫绝。最后实在压抑不住心中的激动,在此写写概率论和生成函数的事情。
数论与复变函数结合,就生成了一门“解析数论”,按照这个说法,概率与复变函数结合,应该就会有一门“解析概率”,但是我在网上搜索的时候,并没有发现这个名词的存在。经过如此,本文还是试用了这个名词。虽然这个名词没有流行,但事实上,解析概率的方法并不算新,它可以追溯到伟大的数学家拉普拉斯以及他的著作《分析概率论》中。尽管如此,这种巧妙漂亮的方法似乎没有得到大家应该有的充分的认识。
我觉得,即使作为一个简洁的计算工具,生成函数法这个美丽的技巧,也应该尽可能为科学爱好者所知,更不用说数学专业的朋友了。
当概率遇上复变:随机游走与路径积分
By 苏剑林 | 2014-06-04 | 24108位读者 | 引用我们在上一篇文章中已经看到,随机游走的概率分布是正态的,而在概率论中可以了解到正态分布(几乎)是最重要的一种分布了。随机游走模型和正态分布的应用都很广,我们或许可以思考一个问题,究竟是随机游走造就了正态分布,还是正态分布造就了随机游走?换句话说,哪个更本质些?个人就自己目前所阅读到的内容来看,随机游走更本质些,随机游走正好对应着普遍存在的随机不确定性(比如每次测量的误差),它的分布正好就是正态分布,所以正态分布才应用得如此广泛——因为随机不确定性无处不在。
下面我们来考虑随机游走的另外一种描述方式,原则上来说,它更广泛,更深刻,其大名曰“路径积分”。
齐次多项式不等式的机器证明(差分代换)
By 苏剑林 | 2014-07-06 | 41133位读者 | 引用在高中阶段,笔者也像很多学生一样参加过数学竞赛,而在准备数学竞赛的过程中,也做过一些竞赛题,其中当然少不了不等式题目。当时,面对各种各样的不等式证明题,我总是非常茫然,因为看到答案之后,总感觉证明的构造非常神奇,但是每当我自己独立去做时,却总想不出来。于是后来就萌生了“有没有办法可以通用地证明这些不等式?”的想法。为了实现这个目的,当时就想出了本文的技巧——通过牺牲计算的简便性来换取证明的有效性。后来,我虽然没有走上数学竞赛这条路,但这个方法还是保留了下来,近日,在和数学研发论坛的朋友们讨论不等式问题时,重新拾起了这个技巧。
此前,在本博客的文章《对称多项式不等式的“物理证明”》中,已经谈到了这个技巧,只是限制于当时的知识储备,了解并不深入。而在本文中,则进行拓展了。这个技巧在当时是我自己在证明中独立发现的,而现在在网上查找时发现,前辈们(杨路、姚勇、杨学枝等)早已研究过这个技巧,称之为“差分代换”,并且已经探究过它在机器证明中的作用。该技巧可以很一般化地用于齐次/非其次不等式的证明,限于篇幅,本文只谈齐次多项式不等式,特别地,是对称齐次多项式不等式,并且发现某些可以简化之处。
素数之美1:所有素数之积
By 苏剑林 | 2014-07-30 | 34073位读者 | 引用在之前的欧拉数学中,我们计算过所有素数的倒数之和,得出素数的倒数之和是发散的,从而这也是一个关于素数个数为无穷的证明。在本篇文章中,我们尝试计算所有素数之积,通过一个简单的技巧,得到素数之积的一个上限(以后我们也会计算下限),从而也得到$\pi(n)$的一个上限公式。更重要的,该估计是初等地证明Bertrand假设(说的是n与2n之间定有一个素数)的重要基础之一。本文内容部分参考自《数学天书中的证明》和《解析和概率数论导引》。
素数之积
笔者已经说过,数论的神奇之处就是它总是出人意料地把数学的不同领域联系了起来。读者很快就可以看到,本文的证明和组合数学有重要联系(但仅仅是简单的联系)。关于素数之积,我们有以下结论:
不超过$n$的所有素数之积小于$4^{n-1}$。
素数之美2:Bertrand假设的证明
By 苏剑林 | 2014-08-09 | 23449位读者 | 引用有了上一篇文章的$\prod\limits_{p\leq n}p < 4^{n-1}$的基础,我们其实已经很接近Bertrand假设的证明了。Bertrand假设的证明基于对二项式系数$C_n^{2n}$的素因子次数的细致考察,而在本篇文章中,我们先得到一个关于素数之积的下限公式,然后由此证明一个比Bertrand假设稍微弱一点的假设。最后,则通过一个简单的技巧,将我们的证明推动至Bertrand假设。
二项式系数的素因子
首先,我们考察$n!$中的素因子$p$的次数,结果是被称为Legendre定理的公式:
$n$中素因子$p$的次数恰好为$\sum\limits_{k\geq 1}\left\lfloor\frac{n}{p^k}\right\rfloor$。
证明很简单,因为$n!=1\times 2\times 3\times 4\times \dots \times n$,每隔$p$就有一个$p$的倍数,每隔$p^2$就有一个$p^2$的倍数,每隔$p^3$就有一个$p^3$的倍数,每增加一次幂,将多贡献一个$p$因子,所以把每个间隔数叠加即可。注意该和虽然写成无穷形式,但是非零项是有限的。
从费马大定理谈起(八):艾森斯坦整数
By 苏剑林 | 2014-08-30 | 42812位读者 | 引用是时候向n=3进军了,为了证明这个情况,我们需要一个新的数环:艾森斯坦整数(Eisenstein Integer)。艾森斯坦是德国著名数学家,同时代的高斯曾经评价:“只有三个划时代的数学家:阿基米德,牛顿和艾森斯坦。”足见艾森斯坦的成就斐然。事实上,阅读费马大定理的研究史,同时也是在阅读数学名人录——没有超高的数学,几乎不可能在费马大定理中有所建树。
基本定义
跟高斯整数一样,艾森斯坦整数也是复整数的一种,其中,高斯整数是以1和$i$为基,$i$其实是一个四次单位根,也就是$x^4-1=0$的一个非实数根,因此高斯整数也叫做四次分圆整数;而艾森斯坦整数以1和$\omega$为基,$\omega$是三次单位根,也就是$x^3-1=0$的一个非实数根。任意一个艾森斯坦整数都可以记为$a+b\omega,\,a,b\in\mathbb{Z}$,艾森斯坦整数环记为$\mathbb{Z}[\omega]$,也称为三次分圆整数环。
两百万素数之和与“电脑病”
By 苏剑林 | 2014-10-17 | 15786位读者 | 引用原则上来讲,同样的算法,如果分别在Python和C++上实现,那么Python的速度肯定比不上C++的。但是Python还被称为“胶水语言”,它允许我们把主要计算的部分用C或C++等高效的语言编写好,然后它作为“粘合剂”把两者粘合在一起。正因为如此,Python才有了各种各样的扩展库,这些库中有不少是用C语言编写的。因此,我们在编写Python程序的时候,如果可以用这些现成的库,速度会快很多。本文就是用Numpy来改进之前的《两百万前素数之和与前两百万素数之和》的计算。
算法本身是没有变的,只是用了Numpy来处理数组计算,代码如下:
算符的艺术:差分、微分与伯努利数
By 苏剑林 | 2014-10-27 | 39153位读者 | 引用两年前,笔者曾写过《算子与线性常微分方程》两篇,简单介绍了把线形常微分方程算符化,然后通过对算符求逆的方法求得常微分方程的通解。而在这篇文章中,笔者打算介绍关于算符类似的内容:差分算符、微分算符以及与之相关的伯努利数(Bernoulli数)。
我们记$D=\frac{d}{dx}$,那么$Df=\frac{df}{dx}$,同时定义$\Delta_t f(x)=f(x+t)-f(x)$,并且记$\Delta \equiv \Delta_1 =f(x+1)-f(x)$,这里我们研究的$f(x)$,都是具有良好性态的。我们知道,$f(x+t)$在$t=0$附近的泰勒展式为
$$\begin{aligned}f(x+t)&=f(x) + \frac{df(x)}{dx}t + \frac{1}{2!}\frac{d^2 f(x)}{dx^2}t^2 + \frac{1}{3!}\frac{d^3 f(x)}{dx^3}t^3 + \dots\\
&=\left(1+t\frac{d}{dx}+\frac{1}{2!}t^2\frac{d^2}{dx^2}+\dots\right)f(x)\\
&=\left(1+tD+\frac{1}{2!}t^2 D^2+\dots\right)f(x)\end{aligned}$$
最近评论