25 Mar

如何看费曼的讲义和朗道的教程?

本文很荣幸得到了高教社的王超编辑(新浪微博 @朗道集结号 )在微信上的推荐,在此表示十分的感谢。

朗道集结号
朗道、费曼、薛定谔、泡利、狄拉克、温伯格……大师在这里等着你,微信号:ldjjhwx

费曼&朗道

费曼&朗道

事实上,取这个标题,有点狂妄自大、班门弄斧的感觉。原因之一是我自己并非物理专业学生,也没有学好物理。再者,我自己也没有读过多少费曼和朗道的书,谈不上“饱读”费曼朗道,又何以指导大家呢?

但是,结合自己在阅读他们的著作的感受,以及自己学习科学的过程,谈谈我对他们的著作的看法。

什么才是最简洁的方式?

相信不少读者觉得朗道的教程比费曼的讲义要深,感觉朗道的书总有大量的数学公式,而费曼的书则轻松一些。笔者开始也有这样的感觉,但是慢慢读下去,才感到费曼的书甚至比朗道的困难。

在进入讨论之前,我们不妨先想一下:什么才是理解物理的最简洁方式?数学越复杂,就越不好吗?

点击阅读全文...

25 Apr

傅里叶变换:只需要异想天开?

在对数学或物理进行事后分析,往往会发现一些奇怪的现象,也有可能得到一些更为深刻有趣的结果。比如本文所要谈及的傅里叶变换,可以由一种“异想天开”的思路得来。

洛朗展式

我们知道,在原点处形态良好的函数,可以展开为泰勒级数
$$f(x)=\sum_{n=0}^{\infty}a_n x^n$$
我们发现,上面的幂都是正的,为什么不能包含$x$的负数次幂呢?比如$\frac{\sin z}{z^2}$展开为
$$\frac{1}{z}-\frac{z}{6}+\frac{z^3}{120}\dots$$
显然也是一件合理的事情。于是,结合复变函数,我们得到解析函数的洛朗展式
$$f(z)=\sum_{n=-\infty}^{+\infty}a_n z^n$$
这是函数的双边展开。其中

点击阅读全文...

1 Jul

勾股数的通解及其推广

在之前的文章《几何的数与数的几何:超复数的浅探究》中,我们谈及过四元数。四元数源于把复数的$|(a+bi)(c+di)|=|a+bi|\times|c+di|$这一独特的性质进行高维推广。为什么偏爱这一性质?读者或许已经初步知道一些用到复数的这一性质的例子,有几何方面的,也有物理方面的,这一性质为处理模长相关问题带来了美妙的方便。本文介绍它在求三元二次齐次不定方程的整数通解中的应用,这一例子同样展示了复数这一性质的神奇,让我们不得不认同当初哈密顿为了将其推广到高维而不惜耗费十年光阴的努力。

勾股数问题

读者或许已经知道,勾股数,也就是满足
$$x^2+y^2=z^2$$
的所有自然数解,由下面公式给出
$$x=a^2-b^2,\quad y=2ab,\quad z=a^2+b^2$$

点击阅读全文...

17 Aug

从费马大定理谈起(四):唯一分解整环

在小学的时候,数学老师就教我们除法运算:

被除数 = 除数 × 商 + 余数

其中,余数要小于除数。不过,我们也许未曾想到过,这一运算的成立,几乎是自然数$\mathbb{N}$所有算术(数论)运算性质成立的基础!在代数中,上面的运算等式称为带余除法(division algorithm)。如果在一个整环中成立带余除法,那么该整环几乎就拥有了所有理想的性质,比如唯一分解性,也就是我们说的算术基本定理。这样的一个整环,被称为唯一分解整环(Unique factorization domain)。

欧几里得整环

Euklid-von-Alexandria_1

Euklid-von-Alexandria_1

唯一分解定理说的是在一个整环之中,所有的元素都可以分解为该整环的某些“素元素”之积,并且在不考虑元素相乘的顺序和相差单位数的意义之下,分解形式是唯一的。我们通常说的自然数就成立唯一分解定理,比如$60=2^2\times 3\times 5$,这种分解是唯一的,这看起来相当显然,但实际上唯一分解定理相当不显然。首先,并不是所有的整数环都成立唯一分解定理的,我们考虑所有偶数组成的环$2\mathbb{Z}$,要注意,在$2\mathbb{Z}$中,2、6、10、30都是素数,因为它们无法分解成两个偶数的乘积了,但是$60=6\times 10=2\times 30$,存在两种不同的分解,因此在这样的数环中,唯一分解定理就不成立了。

点击阅读全文...

1 Oct

几个有关集合势的“简单”证明

我们这学期开设《实变函数》的课程,实变函数的第一章是集合。关于无穷集合的势,有很多异于直觉的结论。这些结论的证明技巧,正是集合论的核心方法。然而,我发现虽然很多结论跟我们的直觉相违背,但是仔细回想,它又没我们想象中那样“离谱”。而我们目前使用的教科书《实变函数论与泛函分析》(曹广福),却没有使用看来简单的证明,反而用一些相对复杂的定理,给人故弄玄虚的感觉。

一、全体实数不能跟全体正整数一一对应

这是集合论中的基本结论之一。证明很简单,如果全体实数可以跟全体正整数一一对应,那么$(0,1)$上的实数就可以跟全体正整数一一对应,把$(0,1)$上的全体实数表示为没有0做循环节的无限小数(比如0.1表示为0.0999...),那么设一种对应为:
$$\begin{aligned}&a_1=0.a_{11} a_{12} a_{13} a_{14}\dots\\
&a_2=0.a_{21} a_{22} a_{23} a_{24}\dots\\
&a_3=0.a_{31} a_{32} a_{33} a_{34}\dots\\
&\dots\dots
\end{aligned}$$

点击阅读全文...

21 Jan

怎么会这么巧!背后的隐藏信息

假设我是一名中学数学老师,在给学生兴致勃勃地讲“素数”,讲完素数的定义和相关性质后,正当我接着往下讲时,有个捣蛋的学生提问,“老师,你能不能举一个三位数的素数?”。可是我手头上没有1000以内的素数表,我也没记住超过100的素数,那怎么办呢?我只好在黑板上写出几个三位数,比如173、211、463,然后跟学生说“让我们来检验这些数是不是素数”。最终的结果是:它们都是素数!然后会有学生疑问:怎么会这么巧?

素数的概率

首先的问题是,任意写一个三位数,它是素数的概率是多少?三位数的素数共有143个,三位数共有900个,于是概率应该是143/900,大约是六分之一。看起来挺低的,要“蒙中”似乎不容易。

点击阅读全文...

28 Oct

在Python中使用GMP(gmpy2)

之前笔者曾写过《初试在Python中使用PARI/GP》,简单介绍了一下在Python中调用PARI/GP的方法。PARI/GP是一个比较强大的数论库,“针对数论中的快速计算(大数分解,代数数论,椭圆曲线...)而设计”,它既可以被C/C++或Python之类的编程语言调用,而且它本身又是一种自成一体的脚本语言。而如果仅仅需要高精度的大数运算功能,那么GMP似乎更满足我们的需求。

了解C/C++的读者都会知道GMP(全称是GNU Multiple Precision Arithmetic Library,即GNU高精度算术运算库),它是一个开源的高精度运算库,其中不但有普通的整数、实数、浮点数的高精度运算,还有随机数生成,尤其是提供了非常完备的数论中的运算接口,比如Miller-Rabin素数测试算法、大素数生成、欧几里德算法、求域中元素的逆、Jacobi符号、legendre符号等[来源]。虽然在C/C++中调用GMP并不算复杂,但是如果能在以高开发效率著称的Python中使用GMP,那么无疑是一件快事。这正是本文要说的gmpy2

点击阅读全文...

8 Dec

伽马函数的傅里叶变换之路

伽马函数
$$\Gamma(x)=\int_0^{+\infty}t^{x-1}e^{-t}dt$$
作为阶乘的推广,会让很多初学者感到困惑,对于笔者来说也不例外。一个最自然的问题就是:这般复杂的推广公式是如何得到的?

在cos.name的文章《神奇的伽马函数》中,有比较详细地对伽马函数的历史介绍,笔者细读之后也获益匪浅。但美中不足的是,笔者还是没能从中找到引出伽马函数的一种“自然”的办法。所谓“自然”,并不是说最简单的,而是根据一些基本的性质和定义,直接把伽马函数的表达式反解出来。它的过程和运算也许并不简单,但是思想应当是直接而简洁的。当然,我们不能苛求历史上伽马函数以这种方式诞生,但是作为事后探索是有益的,有助于我们了解伽马函数的特性。于是笔者尝试了以下途径,得到了一些结果,可是也得到了一些困惑。

点击阅读全文...