与首都机场的“难分难舍”
By 苏剑林 | 2013-07-01 | 16890位读者 | 引用上个月的最后三天(06.28-06.30),我去国家天文台参加了第三届宇宙驿站的站长联谊会及科普研讨会。会议在河北兴隆天文台举行,我们按照计划是先到北京总部,然后去兴隆,然后回到北京总部解散。具体的故事我会另写文章与大家分享,本文主要想说一下我与北京首都国际机场的“难分难舍”的返程之旅。
按照计划,我是昨晚9点的飞机,今天凌晨应该可以到广州。我七点多到机场,八点左右就办完了登记手续,然而,我们等了两三个钟,最终得到的结果是:由于雷暴雨的影响(北京并没有下雨,估计是途中某个地方的上空天气太糟糕),该航班取消,补到第二天七点......这对我来说可真是个大考验。虽说航空公司会为我们联系宾馆,但是效率之低让不少人在机场抗议,于是乎冰冷的机场一下子就热闹起来的(取消的不知我们一趟航班,还有很多其他航班)。而我虽然来过好几次北京,毕竟还属于“异客”,自然经验不足,但我做出了一个很大胆的决定:在机场过夜!
有质动力:倒立单摆的稳定性
By 苏剑林 | 2013-12-29 | 51213位读者 | 引用平面曲线的曲率的复数表示
By 苏剑林 | 2014-03-04 | 30222位读者 | 引用开学已经是第二周了,我的《微分几何》也上课两周了,进度比较慢,现在才讲到平面曲线的曲率。在平面曲线$\boldsymbol{t}(t)=(x(t),y(t))$某点上可以找出单位切向量。
$$\boldsymbol{t}=\left(\frac{dx}{ds},\frac{dy}{ds}\right)$$
其中$ds^2 =dx^2+dy^2$,将这个向量逆时针旋转90度之后,就可以定义相应的单位法向量$\boldsymbol{n}$,即$\boldsymbol{t}\cdot\boldsymbol{n}=0$。
常规写法
让我们用弧长$s$作为参数来描述曲线方程,$\boldsymbol{t}(s)=(x(s),y(s))$,函数上的一点表示对$s$求导。那么我们来考虑$\dot{\boldsymbol{t}}$,由于$\boldsymbol{t}^2=1$,对s求导得到
$$\boldsymbol{t}\cdot\dot{\boldsymbol{t}}=0$$
在讨论曲线坐标系的积分时,通常都会出现行列式这个东西,作为“体积元”的因子。在广义相对论中,爱因斯坦场方程的作用量就带有度规的行列式,而在对其进行变分时,自然也就涉及到了行列式的求导问题。我参考了朗道的《场论》以及《数理物理基础--物理需用线性高等数学导引》,了解到相关结果,遂记录如下。
推导
设
\begin{equation}\boldsymbol{A}(t)=\left(a_{ij}(t)\right)_{n\times n}\end{equation}
是一个n阶矩阵,其中每个矩阵元素都是t的函数。其行列式为$|\boldsymbol{A}|$,自然地,考虑
\begin{equation}\frac{d}{dt}|\boldsymbol{A}|\end{equation}
从费马大定理谈起(三):高斯整数
By 苏剑林 | 2014-08-16 | 48667位读者 | 引用为了拓展整数的概念,我们需要了解关于环和域这两个代数结构,这些知识在网上或者相应的抽象代数教程中都会有。抽象地提出这两个代数结构,是为了一般地处理不同的数环、数域中的性质。在自然数集$\mathbb{N}$中,可以很方便定义和比较两个数字的大小,并且任意一个自然数的子集,都存在最小元素,这两点综合起来,我们就说$\mathbb{N}$是“良序”的(这也是数学归纳法的基础)。在良序的结构中,很多性质的证明变得很简单,比如算术基本定理。然而,一般的数环、数域并没有这样的“良序”,比如任意两个复数就不能比较大小。因此,一般的、不基于良序的思想就显得更为重要了。
环和域
关于环(Ring)的定义,可以参考维基百科上面的“环(代数)”条目。简单来说,环指的是这样一个集合,它的元素之间可以进行加法和乘法,并满足一些必要的性质,比如运算封闭性、加法可交换性等。而数论中大多数情况下研究的是数环,它指的是集合是数集的情况,并且通常来说,元素间的加法和乘法就是普通的数的加法和乘法。比如所有的实整数就构成一个数环$\mathbb{Z}$,这个数环是无限的;所有的偶整数也构成一个数环$2\mathbb{Z}$;对于素数$p$,在模$p$之下,数集$\{0,1,2,\dots,p-1\}$也构成了一个环,更特别的,它还是一个数域。
如何看费曼的讲义和朗道的教程?
By 苏剑林 | 2014-03-25 | 66122位读者 | 引用本文很荣幸得到了高教社的王超编辑(新浪微博 @朗道集结号 )在微信上的推荐,在此表示十分的感谢。
朗道集结号
朗道、费曼、薛定谔、泡利、狄拉克、温伯格……大师在这里等着你,微信号:ldjjhwx
但是,结合自己在阅读他们的著作的感受,以及自己学习科学的过程,谈谈我对他们的著作的看法。
什么才是最简洁的方式?
相信不少读者觉得朗道的教程比费曼的讲义要深,感觉朗道的书总有大量的数学公式,而费曼的书则轻松一些。笔者开始也有这样的感觉,但是慢慢读下去,才感到费曼的书甚至比朗道的困难。
在进入讨论之前,我们不妨先想一下:什么才是理解物理的最简洁方式?数学越复杂,就越不好吗?
傅里叶变换:只需要异想天开?
By 苏剑林 | 2014-04-25 | 45001位读者 | 引用在对数学或物理进行事后分析,往往会发现一些奇怪的现象,也有可能得到一些更为深刻有趣的结果。比如本文所要谈及的傅里叶变换,可以由一种“异想天开”的思路得来。
洛朗展式
我们知道,在原点处形态良好的函数,可以展开为泰勒级数
$$f(x)=\sum_{n=0}^{\infty}a_n x^n$$
我们发现,上面的幂都是正的,为什么不能包含$x$的负数次幂呢?比如$\frac{\sin z}{z^2}$展开为
$$\frac{1}{z}-\frac{z}{6}+\frac{z^3}{120}\dots$$
显然也是一件合理的事情。于是,结合复变函数,我们得到解析函数的洛朗展式
$$f(z)=\sum_{n=-\infty}^{+\infty}a_n z^n$$
这是函数的双边展开。其中
勾股数的通解及其推广
By 苏剑林 | 2014-07-01 | 21940位读者 | 引用在之前的文章《几何的数与数的几何:超复数的浅探究》中,我们谈及过四元数。四元数源于把复数的$|(a+bi)(c+di)|=|a+bi|\times|c+di|$这一独特的性质进行高维推广。为什么偏爱这一性质?读者或许已经初步知道一些用到复数的这一性质的例子,有几何方面的,也有物理方面的,这一性质为处理模长相关问题带来了美妙的方便。本文介绍它在求三元二次齐次不定方程的整数通解中的应用,这一例子同样展示了复数这一性质的神奇,让我们不得不认同当初哈密顿为了将其推广到高维而不惜耗费十年光阴的努力。
勾股数问题
读者或许已经知道,勾股数,也就是满足
$$x^2+y^2=z^2$$
的所有自然数解,由下面公式给出
$$x=a^2-b^2,\quad y=2ab,\quad z=a^2+b^2$$
最近评论