27 Nov

这是一篇“散文”,我们来谈一下有着千丝万缕联系的三个东西:变分自编码器、信息瓶颈、正态分布。

众所周知,变分自编码器是一个很经典的生成模型,但实际上它有着超越生成模型的含义;而对于信息瓶颈,大家也许相对陌生一些,然而事实上信息瓶颈在去年也热闹了一阵子;至于正态分布,那就不用说了,它几乎跟所有机器学习领域都有或多或少的联系。

那么,当它们三个碰撞在一块时,又有什么样的故事可说呢?它们跟“遗忘”又有什么关系呢?

变分自编码器

在本博客你可以搜索到若干几篇介绍VAE的文章。下面简单回顾一下。

理论形式回顾

简单来说,VAE的优化目标是:
\begin{equation}KL(\tilde{p}(x)p(z|x)\Vert q(z)q(x|z))=\iint \tilde{p}(x)p(z|x)\log \frac{\tilde{p}(x)p(z|x)}{q(x|z)q(z)} dzdx\end{equation}
其中$q(z)$是标准正态分布,$p(z|x),q(x|z)$是条件正态分布,分别对应编码器、解码器。具体细节可以参考《变分自编码器(二):从贝叶斯观点出发》

点击阅读全文...

27 Jan

继续“让Keras更酷一些!”系列,让Keras来得更有趣些吧~

这次围绕着Keras的loss、metric、权重和进度条进行展开。

可以不要输出

一般我们用Keras定义一个模型,是这样子的:

x_in = Input(shape=(784,))
x = x_in
x = Dense(100, activation='relu')(x)
x = Dense(10, activation='softmax')(x)

model = Model(x_in, x)
model.compile(loss='categorical_crossentropy ',
              optimizer='adam',
              metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)

点击阅读全文...

10 May

能量视角下的GAN模型(三):生成模型=能量模型

本文的模型在ImageNet(128x128)上的条件生成效果

本文的模型在ImageNet(128x128)上的条件生成效果

今天要介绍的结果还是跟能量模型相关,来自论文《Implicit Generation and Generalization in Energy-Based Models》。当然,它已经跟GAN没有什么关系了,但是跟本系列第二篇所介绍的能量模型关系较大,所以还是把它放到这个系列好了。

我当初留意到这篇论文,是因为机器之心的报导《MIT本科学神重启基于能量的生成模型,新框架堪比GAN》,但是说实在的,这篇文章没什么意思,说句不中听的,就是炒冷饭系列,媒体的标题也算中肯,是“重启”。这篇文章就是指出能量模型实际上就是某个特定的Langevin方程的静态解,然后就用这个Langevin方程来实现采样,有了采样过程也就可以完成能量模型的训练,这些理论都是现成的,所以这个过程我在学习随机微分方程的时候都想过,我相信很多人也都想过。因此,我觉得作者的贡献就是把这个直白的想法通过一系列炼丹技巧实现了。

但不管怎样,能训练出来也是一件很不错的事情,另外对于之前没了解过相关内容的读者来说,这确实也算是一个不错的能量模型案例,所以我论文的整体思路整理一下,让读者能够更全面地理解能量模型。

点击阅读全文...

9 Sep

新词发现是NLP的基础任务之一,主要是希望通过无监督发掘一些语言特征(主要是统计特征),来判断一批语料中哪些字符片段可能是一个新词。本站也多次围绕“新词发现”这个话题写过文章,比如:

在这些文章之中,笔者觉得理论最漂亮的是《基于语言模型的无监督分词》,而作为新词发现算法来说综合性能比较好的应该是《更好的新词发现算法》,本文就是复现这篇文章的新词发现算法。

点击阅读全文...

10 Sep

变分自编码器(六):从几何视角来理解VAE的尝试

前段时间公司组织技术分享,轮到笔者时,大家希望我讲讲VAE。鉴于之前笔者也写过变分自编码器系列,所以对笔者来说应该也不是特别难的事情,因此就答应了下来,后来仔细一想才觉得犯难:怎么讲才好呢?

变分自编码器示意图

变分自编码器示意图

对于VAE来说,之前笔者有两篇比较系统的介绍:《变分自编码器(一):原来是这么一回事》《变分自编码器(二):从贝叶斯观点出发》。后者是纯概率推导,对于不做理论研究的人来说其实没什么意义,也不一定能看得懂;前者虽然显浅一点,但也不妥,因为它是从生成模型的角度来讲的,并没有说清楚“为什么需要VAE”(说白了,VAE可以带来生成模型,但是VAE并不一定就为了生成模型),整体风格也不是特别友好。

笔者想了想,对于大多数不了解但是想用VAE的读者来说,他们应该只希望大概了解VAE的形式,然后想要知道“VAE有什么作用”、“VAE相比AE有什么区别”、“什么场景下需要VAE”等问题的答案,对于这种需求,上面两篇文章都无法很好地满足。于是笔者尝试构思了VAE的一种几何图景,试图从几何角度来描绘VAE的关键特性,在此也跟大家分享一下。

点击阅读全文...

本文的主题是“为什么我们需要有限的学习率”,所谓“有限”,指的是不大也不小,适中即可,太大容易导致算法发散,这不难理解,但为什么太小也不好呢?一个容易理解的答案是,学习率过小需要迭代的步数过多,这是一种没有必要的浪费,因此从“节能”和“加速”的角度来看,我们不用过小的学习率。但如果不考虑算力和时间,那么过小的学习率是否可取呢?Google最近发布在Arxiv上的论文《Implicit Gradient Regularization》试图回答了这个问题,它指出有限的学习率隐式地给优化过程带来了梯度惩罚项,而这个梯度惩罚项对于提高泛化性能是有帮助的,因此哪怕不考虑算力和时间等因素,也不应该用过小的学习率。

对于梯度惩罚,本博客已有过多次讨论,在文章《对抗训练浅谈:意义、方法和思考(附Keras实现)》《泛化性乱弹:从随机噪声、梯度惩罚到虚拟对抗训练》中,我们就分析了对抗训练一定程度上等价于对输入的梯度惩罚,而文章《我们真的需要把训练集的损失降低到零吗?》介绍的Flooding技巧则相当于对参数的梯度惩罚。总的来说,不管是对输入还是对参数的梯度惩罚,都对提高泛化能力有一定帮助。

点击阅读全文...

6 Nov

那个屠榜的T5模型,现在可以在中文上玩玩了

不知道大家对Google去年的屠榜之作T5还有没有印象?就是那个打着“万事皆可Seq2Seq”的旗号、最大搞了110亿参数、一举刷新了GLUE、SuperGLUE等多个NLP榜单的模型,而且过去一年了,T5仍然是SuperGLUE榜单上的第一,目前还稳妥地拉开着第二名2%的差距。然而,对于中文界的朋友来说,T5可能没有什么存在感,原因很简单:没有中文版T5可用。不过这个现状要改变了,因为Google最近放出了多国语言版的T5(mT5),里边当然是包含了中文语言。虽然不是纯正的中文版,但也能凑合着用一下。

“万事皆可Seq2Seq”的T5

“万事皆可Seq2Seq”的T5

本文将会对T5模型做一个简单的回顾与介绍,然后再介绍一下如何在bert4keras中调用mT5模型来做中文任务。作为一个原生的Seq2Seq预训练模型,mT5在文本生成任务上的表现还是相当不错的,非常值得一试。

点击阅读全文...

21 Dec

从动力学角度看优化算法(七):SGD ≈ SVM?

众所周知,在深度学习之前,机器学习是SVM(Support Vector Machine,支持向量机)的天下,曾经的它可谓红遍机器学习的大江南北,迷倒万千研究人员,直至今日,“手撕SVM”仍然是大厂流行的面试题之一。然而,时过境迁,当深度学习流行起来之后,第一个革的就是SVM的命,现在只有在某些特别追求效率的场景以及大厂的面试题里边,才能看到SVM的踪迹了。

峰回路转的是,最近Arxiv上的一篇论文《Every Model Learned by Gradient Descent Is Approximately a Kernel Machine》做了一个非常“霸气”的宣言:

任何由梯度下降算法学出来的模型,都是可以近似看成是一个SVM!

这结论真不可谓不“霸气”,因为它已经不只是针对深度学习了,而是只要你用梯度下降优化的,都不过是一个SVM(的近似)。笔者看了一下原论文的分析,感觉确实挺有意思也挺合理的,有助于加深我们对很多模型的理解,遂跟大家分享一下。

点击阅读全文...