【搜出来的文本】⋅(四)通过增、删、改来用词造句
By 苏剑林 | 2021-02-25 | 49762位读者 | 引用“用词造句”是小学阶段帮助我们理解和运用词语的一个经典任务,从自然语言处理的角度来看,它是一个句子扩写或者句子补全任务,它其实要求我们具有不定向地进行文本生成的能力。然而,当前主流的语言模型都是单方向生成的(多数是正向的,即从左往右,少数是反向的,即从右往左),但用词造句任务中所给的若干个词未必一定出现在句首或者句末,这导致无法直接用语言模型来完成造句任务。
本文我们将介绍论文《CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling》,它使用MCMC采样使得单向语言模型也可以做到不定向生成,通过增、删、改操作模拟了人的写作润色过程,从而能无监督地完成用词造句等多种文本生成任务。
问题设置
无监督地进行文本采样,那么直接可以由语言模型来完成,而我们同样要做的,是往这个采样过程中加入一些信号$\boldsymbol{c}$,使得它能生成我们期望的一些文本。在本系列第一篇文章《【搜出来的文本】⋅(一)从文本生成到搜索采样》的“明确目标”一节中,我们就介绍了本系列的指导思想:把我们要寻找的目标量化地写下来,然后最大化它或者从中采样。
2009年5月22日,对于很多人来说并不是什么特别的日志,不过数学界这边又传来了一个“喜讯”:我们已经找到了第47个梅森素数,即$2^{42643801}-1$是一个素数!新的素数已于6月12日通过法国的Tony Reix的验证,这是目前的第二大素数,有12,837,064位数字!这是通过参加一个名为“因特网梅森素数大搜索”(GIMPS)的国际合作项目而发现的。让我们来共同回顾这一素数之旅!
素数/梅森素数
素数,现在课本上都已经成为“质数”了,不过目前很多数学家、爱好者都还是将其称为素数(也许这个名字好听)。这是指一些不可分解成两个比它本身小的两个整数相乘的形式的数,如2、3、5、7等。除了2外,所有的素数都是奇数。
费曼路径积分思想的发展(一)
By 苏剑林 | 2012-12-26 | 29069位读者 | 引用注:这是郝刘祥前辈的一篇论文,98年的时候发表在《自然辩证法通讯》上,里边讲述了费曼以及路径积分的相关故事。我从网上下载下来,原文是很粗糙的pdf文件,我特意将它转化为网页文件,供大家欣赏。有些公式很模糊,所以我已经到图书馆查找了原文,但是由于作者非理论物理专业人员,还不确定部分公式是否正确,请读者慎读。原文较长,将分开几篇来发。如果涉及到版权问题,请作者告之(bojone@spaces.ac.cn),我将会尽快处理掉。
自然辩证法通讯(JOURNAL OF DIALECTICS OF NATURE)
第二十卷总115期,1998第3期
郝刘祥
摘要:该文首先阐述了 Richard Feynman为解决经典电动力学的发散问题而做的艰苦努力,进而论述了这种努力的副产品何以使他偏爱作用量表述,以及他是如何在Dirac文章的启发下得到非相对论量子力学的第三种形式--作用量量子化方案的。文章的第三部分叙述了费曼将其方案推广到相对论情形的尝试和费曼图的由来。最后,该文试图就路径积分方法在量子场论等领域中的广泛应用以及费曼对量子场论的重大疑惑作一简要的说明。
关键词:费曼,作用量,几率幅,路径积分
费曼路径积分思想的发展(四)
By 苏剑林 | 2012-12-27 | 40224位读者 | 引用4、量子场论中的泛函方法
路径积分出现之初,大多数物理学家反映都很冷淡,甚至怀疑它的正确性。这一方面是对路径积分方法的陌生与误解所致。在泊珂淖会议上,玻尔就把费曼图误解成粒子运动的轨迹,并对之进行了尖锐的批评。([19],P.459)另一方面,费曼并没有用公理化的方法,从作用量或拉格朗日量出发系统地推导出费曼规则,他是靠经验、猜测、检验和比较来给出与各种图相应的规则的。尽管如此,费曼却能把他的方法推广到当时热门的介子理论,并且只需一个晚上就可解决他人用正则哈密顿方法要用几个月的时间才能解决的问题。费曼方法的有效性,使戴逊大为惊讶,并促使他相信路径积分“必定是根本上正确的”([1],P.54)理论。随之,戴逊便决定把“理解费曼(的思想)并用一种他人能理解的语言来加以阐述”([1],p.54)作为自己的主要工作。1948年,戴逊成功地证明了朝永振一朗、施温格和费曼三人的理论“在其共同适用领域内”[25]的等价性。费曼的粒子图像的路径积分方法由此改头换面,变成了场论形式的泛函积分方法。
数学歌曲:《歌德巴赫猜》
By 苏剑林 | 2009-07-30 | 22692位读者 | 引用《哈勃太空望远镜超高清原始片源》VeryCD资源
By 苏剑林 | 2009-10-08 | 33438位读者 | 引用《方程与宇宙》:活力积分和开普勒方程(二)
By 苏剑林 | 2010-03-27 | 59701位读者 | 引用在上一回的讨论中,我们已经解决了大部分的问题,并且表达了找到r或者$\theta$关于时间t的函数的希望。在最后的内容中,我们做了以下工作:
由(7)得到$\dot{\theta}=h/r^2$,代入(6)得到:
$$\ddot{r} -h^2/r^3=-\frac{\mu}{r^2}\tag{10}$$这是一个二阶微分方程,它的解很容易找出,但是这个积分太复杂:
$$\dot{r}\frac{d\dot{r}}{dr}=h^2/r^3-\frac{\mu}{r^2}$$
$\dot{r}d\dot{r}=(h^2/r^3-\frac{\mu}{r^2})dr$,两端积分
$$\dot{r}^2={2\mu}/r-h^2/r^2+K_1\tag{11}$$$$\Rightarrow {dt}/{dr}=\frac{r}{\sqrt{K_1 r^2+2\mu r-h^2}}$$
$t=\int \frac{r}{\sqrt{K_1 r^2+2\mu r-h^2}}dr$
《方程与宇宙》:拉格朗日点的点点滴滴(四)
By 苏剑林 | 2010-08-15 | 95234位读者 | 引用The New Calculation Of Lagrangian Point 1,2,3
关于n体问题,选择质心或其他定点为参考点,我们可以列出下面的运动方程:
$$\ddot{\vec{r}}_k=\sum_{i=1,i != k}^{n} Gm_i\frac{\vec{r}_i-\vec{r}_k}{|\vec{r}_i-\vec{r}_k|^3}\tag{19}$$
现在我们只考虑三体问题。天文学家一直希望能够找到三体问题的简洁解,可是很遗憾,庞加莱已经证明了三体问题的解是混沌的,也就是说任何微小的扰动都有可能造成不可预料的后果(可以形象的比喻为:巴西的一只蝴蝶翅膀的扇动,有可能因此美国的一场龙卷风)。
最近评论